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A Minimal Colloid Model of Solution Crystallization Nu-
cleates Crystals Classically†

Gary Chen,∗a Mariah J. Gallegos,a Diego D. Soetrisno,a Peter G. Vekilov,a,b and Jacinta C.
Conrada

A fundamental assumption of the classical theories of crystal nucleation is that the individual
molecules from the “old” phase associate to an emerging nucleus individually and sequentially. Nu-
merous recent studies of crystal nucleation in solution have revealed nonclassical pathways, whereby
crystal nuclei are hosted and fed by amorphous clusters pre-formed in the solution. A sizable knowl-
edge gap has persisted, however, in the definition of the molecular-level parameters that direct
a solute towards classical or nonclassical nucleation. Here we construct a suspension of colloid
particles of hydrodynamic diameter 1.1 µm and monitor their individual motions towards a quasi-
two-dimensional crystal by scanning confocal microscopy. We combine electrostatic repulsion and
polymer-induced attraction to obtain a simple isotropic pair interaction potential with a single at-
tractive minimum of tunable depth between 1.2 kBT and 2.7 kBT . We find that even the smallest
aggregates that form in this system structure as hexagonal two-dimensional crystals and grow and
maturate by the association and exchange of single particles from the solution, signature behaviors
during classical nucleation. The particles in the suspension equilibrate with those in the clusters
and the volume fractions of suspensions at equilibrium correspond to straightforward thermodynamic
predictions based on depth of the interparticle attraction. These results demonstrate that classical
nucleation is selected by particles interacting with a minimal potential and present a benchmark for
future modifications of the molecular interactions that may induce nonclassical nucleation.

1 Introduction
Crystallization, the formation of translationally-symmetric arrays
of atoms, molecules, or particles, is an essential part of the syn-
thesis of geological, biological and engineered materials.1,2 Crys-
tallization divides into nucleation, in which the assembly of ini-
tial crystal domains is impeded by the free energy cost of the
emerging crystal-solution interface, and growth, which does not
encounter thermodynamic obstacles.3–5 Classical theories of crys-
tal nucleation and growth assume that the building constituents
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attach to a growing nucleus or crystal individually and sequen-
tially.6–12 In the last 20 or so years, experiments with diverse
systems crystallizing in solution have exposed a role for precur-
sors that may be liquid, amorphous, or even crystalline as nucle-
ation hosts and crystal building blocks.13–20 Nonclassical nucle-
ation and growth have become so ubiquitous that rare instances
of demonstrated classical behaviors are now celebrated.21,22

What has been missing from the discussion of classical and non-
classical crystal nucleation and growth pathways in solution is ra-
tionalization of the molecular-level parameters that direct a crys-
tallizing system towards one of the two mechanisms. Attempting
to address this issue, observations with calcite – a mineral found
in rocks, shells, skeletons, and tissues23 – were interpreted to
suggest that the shift from classical to nonclassical behavior may
be driven by the increasing dominance of nonspecific intermolec-
ular attraction over specific, i.e., short-ranged and directional, in-
teractions.24,25 Here we address the characteristics of the inter-
molecular interaction potential that may select classical or non-
classical crystallization behaviors in solution. We focus on crystal
nucleation, for which the transition from classical to nonclassical
pathways may accelerate the nucleation rate by multiple orders

Journal Name, [year], [vol.],1–9 | 1

Page 1 of 9 Soft Matter



of magnitude.

In situ monitoring of crystal nucleation with near molecular
resolution has mostly relied on two methods: atomic force mi-
croscopy (AFM)26 and liquid cell transmission electron micro-
scope (TEM).27 AFM (lateral resolution ∼30 nm, vertical reso-
lution ∼0.1 nm, temporal resolution ∼min), however, is too slow
to provide dynamics of individual constituents. Further, AFM only
images objects adhering to a substrate,28 which may impact the
evolution of the nuclei.28,29 More reliable is the use of the sub-
strate as a trap for critical and near critical clusters formed in
the solution,26,30 but this imaging protocol is handicapped by the
possibility of missing crucial stages in the nuclei evolution. Liquid
phase TEM imaging (lateral resolution ∼0.2 nm, temporal resolu-
tion ∼0.1 fps) has been recently employed to examine the path-
ways for nucleation for individual nanoparticles31 and assemblies
of nanoparticles.32–34 This technique is challenging to use, how-
ever, because it suffers from low signal-to-noise ratio35,36 and ef-
fects of electron beam exposure.37 An additional challenge of this
modality is the extremely small imaged solution volume, of the
order of a few femtoliters.38 To increase the probability of a nu-
cleation event in this small volume, high supersaturations, which
may bias the nucleation pathway, are often employed. Finally, the
interactions between small faceted nanoparticles are often direc-
tional and orientation-specific39, making it difficult to deconvolve
these interactions from those due to the interparticle potential.

To circumvent these challenges, we monitor the phase dynam-
ics in a suspension of colloidal particles, as in numerous previ-
ous studies.40–47 While interactions between micron-sized col-
loidal particles are much shorter-ranged (typically several per-
cent of the particle diameter) than those of atomic or molec-
ular systems (comparable to the atom/molecule size48,49), this
model system is nonetheless able to reproduce many features of
the phase behavior of atomic or molecular systems.50,51 We em-
ploy fast-scanning confocal microscopy52 (lateral spatial resolu-
tion ∼300 nm, temporal resolution ∼ 0.1s) and image processing
algorithms53 to track the motions of 1.1 µm diameter copolymer
particles in dilute suspensions. The particle trajectories directly
reveal the structures of the emerging clusters and their dynamics.
An additional advantage of the chosen model is that we can en-
gineer the interparticle interactions. We develop a minimal tun-
able isotropic interaction potential dominated by electrostatic re-
pulsion and polymer-induced attraction.54 We carefully balance
these two forces to obtain a simple pair interaction potential, in
which soft short-range repulsion transitions to attraction via a sin-
gle minimum with adjustable depth. Electrostatic repulsion by the
upper and lower cuvette walls confine the particles to motion in
the image plane. We show that in this system, hexagonal two-
dimensional crystals nucleate from solution and maturate follow-
ing strictly classical pathways.

2 Materials and Methods

2.1 Particle synthesis

We synthesized poly (2,2,2-trifluoroethyl methacrylate-co-tert-
butyl methacrylate) (TtMA) particles using an existing proto-
col.55 The particles consist of a fluorescent core dyed with rho-

damine B methacrylate, a non-fluorescent shell sterically stabi-
lized with poly(vinylpyrrolidone) (PVP), and negatively charged
co-polymer brushes. Particles were synthesized with a volumetric
ratio of 26:74 of 2,2,2-trifluoroethyl methacrylate (TFEMA; Syn-
quest Laboratories) to tert-butyl methacrylate (tBMA). The den-
sity (1.15 g cm−3) and refractive index (n = 1.45) of the parti-
cles and solution were estimated from the ideal mixing rule and
Lorentz-Lorenz equation, respectively. An initiator-monomer (in-
imer), 2-(2-bromoisobutyryloxy) ethyl acrylate, was synthesized
and included in both the core and shell synthesis as a growth ini-
tiator for the outer layer of negatively charged copolymer brush.
The charged copolymer brush was composed of dimethylacry-
lamide and 2-acrylamido-2-methyl-1-propanesulfonic acid and
was grafted onto the particles by atom transfer radical polymer-
ization (ATRP). After each synthesis step, the particles were col-
lected and washed by centrifugation with methanol or de-ionized
water at least five times. After final centrifugation, the particles
were resuspended in DI water at a volume fraction φ = 0.4. The
resulting suspension was stored in a refrigerator.

2.2 Particle characterization

The hydrodynamic radii of the particles after each synthesis step
were measured by dynamic light scattering (DLS; ALV-GmBH in-
strument). Light scattering data were acquired at five angles
θ = 60◦, 75◦, 90◦, 105◦, and 120◦. We obtained the normal-
ized time autocorrelation function of the intensity of the scat-
tering light g(2)(q,τ) for a given delay time τ and wavevector
q = (4πn/λ )sin(θ/2), where n = 1.333 is the refractive index of
water. Data were fit to a third-order cumulant model,56

g(2)(q,τ) = B+β exp(−2Γτ)
(

1+
µ2

2!
τ

2 − µ3

3!
τ

3
)2

(1)

where B is the baseline (≈ 1), β ≈ 1 depends on the instrument
geometry, Γ = Dq2 is the intensity decay rate, τ is the delay time,
µ2 and µ3 are the second and third moments of the mean, and
D is the diffusion coefficient of the particles. From D, we de-
termined the hydrodynamic radius of the particles, a, using the
Stokes-Einstein relation,

D =
kBT

6πηa
, (2)

where η is the dynamic viscosity of the solvent (water).

The zeta potential ζ = −85± 4 mV of the particles was mea-
sured with a Nicomp 380 ZLS zeta sizer. For this measurement,
the negatively charged particles were diluted in 10 mM Tris buffer
(φ ≈ 0.001; pH = 7.5). Scanning electron microscopy (SEM, Axia
ChemiSEM, ThermoFisher, Czech Republic) was applied to image
the synthesized particles.

2.3 Sample preparation

Suspensions for imaging experiments were prepared by mix-
ing stock suspensions of synthesized particles, deionized water,
sodium hydroxide, and polyacrylamide (PAM, Mw = 194 kDa,
Mw/Mn = 1.25, Polymer Source). Using capillary viscometry, we
determine the polymer radius of gyration at infinite dilution as

2 | 1–9Journal Name, [year], [vol.],

Page 2 of 9Soft Matter



Rg = 22 nm, leading to a size ratio ξ = Rg/a = 0.04. Samples
at initial volume fraction φ0 =0.03, 0.04, and 0.05 were mixed
on a rolling mixer for at least 16 hours to ensure that they were
homogenized. The final concentration of sodium hydroxide and
PAM is given in the total sample volume.

Glass chambers were fabricated with glass cover slides and
NOA 68T UV-curable epoxy (Norland Products Inc.). The glass
slides (48×65 mm No. 1, Thermo, USA; 22×22 mm No. 1, VWR,
Germany) were first immersed in a base bath (≈ 70 g L−1 KOH
in isopropyl alcohol) for at least one hour and rinsed in deionized
water. The glass slides were dried with nitrogen and then cleaned
by low pressure air plasma (Harrick Plasma, USA) for at least 2
hours. A droplet (∼ 2.2 µL) of the particle suspension was placed
onto the cleaned glass slide and then covered by a cleaned cover
slip. Capillary forces drove any occational bubbles to the edge of
the cover slip, after which the chamber was sealed with epoxy.

2.4 Confocal imaging and analysis

Suspensions were imaged using a Leica SP8 microscope equipped
with a 63x oil-immersion objective lens (numerical aperture of
1.4). At a given time point we acquired 3×3 image tile sets, in
which each tile was 61.3 µm × 61.3 µm. To characterize the time
evolution of the suspension, image tile sets were acquired every
ten minutes for 16 to 28 hours. At least three replicates were
taken for each sample . Particle trajectories were obtained using
the Crocker and Grier algorithm in IDL.53

The ensemble-averaged 1D mean-square displacement MSD =〈
(x(t + τ)− x(t))2〉 was calculated from the particle trajecto-

ries. We also evaluated the radial distribution function g(r) =
1

2πrρNdr ∑
N
i=1 ni(r), where ni(r) is the number of particles identi-

fied at distance between r and r+dr away from a reference par-
ticle i, ρ is the mean particle number density, and N is the to-
tal number of identified particles. To characterize the local clus-
ter structure, we calculated the 2D bond-orientational order pa-
rameter ψ6 = 1

n ∑
n
l=1 exp[i6θl ], where n is the number of nearest

neighbor, θl is the angle between the vector connecting a near-
est neighbor l and an arbitrary reference vector, and used its
magnitude, |ψ6|, as a metric for the closeness of the first neigh-
bor shell to a hexagon (expected for a perfect 2D packing). We
characterized the cluster size using the cluster radius of gyration
Rg,c = [(] 1

k ∑
k
i=1(ri −RCM)2 +a2]0.5, where k is number of particles

in the cluster and ri and RCM are the positions of particle i in the
cluster and the center of mass of the cluster, respectively. The
Voronoi diagrams of clusters and their dual Delaunay triangula-
tions were calculated from the particle centroid positions using
standard MATLAB functions.

3 Results and Discussion

3.1 Characteristics of particles

The hydrodynamic diameter of the particles (Fig. 1a), determined
from the scaling of the decay rate Γ of the light scattered by the
particles with the wave vector q, is 2a = 1.1± 0.1 µm (Fig. 1b).
The particles dispersed in DI water without salt or polymer form
a quasi-2D layer in the thin sample chambers (Fig. 1c). The dy-
namics of the confined particles are diffusive, as indicated by the

linear scaling of the mean-square displacement (MSD) with time.
Their diffusion coefficient, 0.116 µm2 s−1, is smaller than the
free diffusivity DS−E = 0.143 µm2 s−1 predicted using the Stokes-
Einstein equation and the hydrodynamic radius determined by
light scattering in bulk samples. The smaller value may be due to
interactions57 between the particles and the glass substrate that
impede diffusion.58
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Fig. 1 Characterization of the particles. (a) SEM image of TtMA par-
ticles. Inset: illustration of particle composed of core, shell, and brush
(not drawn to scale). (b) Decay rate of light scattering intensity as a
function of wavevector. (c) Confocal micrograph of the particles suspen-
sion with initial volume fraction φ0 = 0.05 suspended in DI water. Inset:
3-D rendering of the particle positions, illustrating that the particles form
a quasi-monolayer in the thin chamber. (d) Mean-square displacement
(MSD) as a function of lag time of the TtMA particles suspended in DI
water.

3.2 Interparticle potential

To tune the interactions between the TtMA particles, we add poly-
acrylamide (1.5 mg mL−1 = 0.3 c/c∗, where c∗ is the overlap
concentration), to induce depletion attraction, and NaOH, to par-
tially screen the electrostatic repulsion. In the absence of added
NaOH, particles appear well dispersed. The radial distribution
function g(r) is independent of time and increases from zero to
one near r = 2a, where a is the hydrodynamic radius of the parti-
cles (Fig. 2a). This result suggests that the electrostatic repulsion
due to the particle charge approximately cancels the depletion at-
traction caused by the added PAM; thus, the particles are slightly
charged.

In samples with added NaOH, by contrast, confocal micro-
graphs reveal clusters of particles (Fig. S1). The depletion at-
traction is sufficiently strong to overcome the partially-screened
electrostatic repulsion, leading to aggregates of particles that
evolve over time. The corresponding pair correlation functions
exhibit local maxima and g(r) varies with time (Fig. 2b-d). We
obtain the interparticle potential U(r) from g(r) via g(r) =

exp(−U(r)/kBT ).59 The potential well depth U0, determined as
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the local minimum, is a function of the salt concentration for the
range investigated here (10 – 50 mM). For [NaOH] = 10 mM,
the well depth (U0 = 1.2 kBT ) is comparable to the thermal fluc-
tuations (Fig. 2b) and particles are relatively well dispersed. For
salt concentrations of 30 and 50 mM, the potential well depths
are 1.7 and 2.7 kBT , respectively. The pair correlation func-
tions for these suspensions exhibit additional peaks in g(r) (Fig.
2c,d)), consistent with structural correlations at distances greater
the nearest-neighbor separation arising from larger clusters. We
model the combined potential U = UAO +UY of our samples at
various salt concentrations as the sum of the the Asakura-Oosawa
potential60 and the Yukawa potential61,62, which respectively de-
scribe the depletion attraction and electrostatic repulsion. The
Asakura-Oosawa potential is given by UAO(r)

kBT =−( 3
2 )φpβx2, where

kB is Boltzmann’s constant, T is the temperature, r is the inter-
particle distance, β is the size ratio between the particle and
the polymer, φp is the volume concentration of the polymer, and
x = (D + d − r)/d is a function of the particle diameter D = 2a
and polymer size d = 2Rg (Fig. S3). The Yukawa potential is

UY(r) = ε
exp[−κD(r/D−1)]

r/D , where ε is the contact potential, and

κ−1 is the Debye screening length. The potential well depth cal-
culated from the model, U0 = −1.55kBT , is in good agreement
with the well depths evaluated from the experimentally deter-
mined g(r) values.
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Fig. 2 Time evolution of the interparticle potential. Pair correlation
function g(r) (top) and the corresponding interparticle potential U(kBT )
(bottom) over the times shown in (a) as functions of the normalized
distance r/2a between the centers of mass of two particles. The PAM
concentration is 0.3 c/c∗ and the NaOH concentrations are (a) 0, (b)
10, (c) 30, and (d) 50 mM. The shaded region in the potential plots
indicates the error in the interparticle potential, calculated as the stan-
dard deviation of three measurements on one sample after equilibrium is
reached. Insets: representative micrographs of particles at equilibrium at
different NaOH concentrations. The scale bar equals 10 µm.

3.3 Cluster characterization
To characterize clusters of particles, we first identify the nearest
neighbors using a cutoff distance of 2.5a, determined from the

first local minimum of g(r), and assign particles to clusters based
on neighbor connectivity (Fig. 3). For a representative sample
with φ0=0.03 at [PAM]=0.3c/c∗ and 30 mM NaOH, the cluster
size distribution evolves over time (Fig. 3(b)). On time scales of 8
h the cluster number density reaches a steady state, and exhibits
a weak shoulder at ∼ 10 particles per cluster (inset of Fig. 3(b)).
The presence of this weak second local maximum is similar to that
found in simulations of the cluster size distribution for particles
with competing attractive and repulsive interactions (a combined
Lennard-Jones and Yukawa potential).63

3.4 Equilibrium between particles and clusters

To monitor the approach of the particle suspension to equilibrium
with the crystals, we examined the evolution of the volume frac-
tion of monomeric particles φm. We find that φm decreases over
time as particles are incorporated into clusters (Fig. 3(c)). At long
times, φm(t) reaches a steady value φe. Two observations identify
φe as the particle solubility, i.e., the volume fraction at which the
particles are in equilibrium with the clusters.64 First, during the
time that φm is steady, the clusters exchange particles with the
solution. The steady φm indicates that during any length of time,
the numbers of monomeric particles that dissociate from or asso-
ciate to clusters are equal. Second, φe is independent of the initial
particle volume fraction.

The solubility φe depends on the salt concentration in the solu-
tion (Fig. 3(d)) because the NaOH concentration affects the inter-
particle interactions (Fig. 2). Notably, φe is a non-monotonic func-
tion of salt concentration (Fig. 3(d)), first decreasing and then
increasing with increasing [NaOH]. These behaviors are similar
to observations in proteins and colloids, where the decreasing-φe

regime is referred to as salting-out and the increasing-φe regime
as salting-in.65 Salting-out has been attributed to the screening of
the electrostatic interactions between the particles in the suspen-
sion by the ions66 (also seen in Fig. 2). Salting-in has been tenta-
tively assigned to association of ions to the particle surface (in our
case, likely, to the charged amide and sulfonic groups of the poly-
mer brushes on the particle surfaces), which lowers their charge,
attenuates their repulsion, and allows greater volume fraction in
the solution.67

We relate φe to the strength of the interparticle interactions.
We denote as ψ the energy of the bond between two particles
in a cluster, which corresponds to the minima in the interpar-
ticle interaction potentials in Fig. 2. The enthalpy ∆h to trans-
fer a particle from the suspension to a cluster, equal to the
enthalpy of cluster formation per particle, is then ∆h = zψ/2,
where z = 6 is the number of nearest neighbors of a particle in
a two-dimensional cluster. With the entropy change of cluster
formation ∆s = k lnφ per particle, the difference of the chemi-
cal potential of a particle in the suspension and in a cluster is
∆µ = ∆h−T ∆s = zψ/2− kBT lnφ . At equilibrium ∆µ = 0, and we
obtain for the solubility lnφe = zψ/2kBT . Using φe = 0.017 and
0.004 for, respectively, 10 and 30 mM NaOH (Fig. 3(d)), we ob-
tain ψ = –1.2 kBT and –1.7 kBT , in good agreement with the min-
ima in U(r) (Fig. 2(b) and (c)). At 50 mM NaOH, however, the
U(r) minimum (Fig. 2(d)) suggests ψ ≈ −2.7kBT , which would
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predict φe ≈ 0.00022. The actual solubility, φe ≈ 0.015, is sub-
stantially higher. This discrepancy suggests that at high concen-
trations NaOH may induce a more elaborate interplay between
enthalpic, entropic, and spatial interactions involving the poly-
mer brushes on the particles and the polyacrylamide present in
the suspension. We posit that the effects of NaOH on the behav-
iors of particles in the suspension diverge from its effects on the
particles in the clusters. Hence, the solubility, which is a prop-
erty of the equilibrium between the suspension and the clusters,
responds differently to high NaOH concentration than the cluster
structure, used to evaluate U(r).
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Fig. 3 Characterization of the clusters of particles. (a) Confocal mi-
crograph of clusters of particles. A cutoff of 2.5a is used to identify
neighboring particles. Cluster and isolated particles are shaded blue and
green, respectively. (b) Cluster size distributions at the times indicated
by the number next to each curve, in hours, for a suspension with φ0=
0.03, [PAM]= 0.3 c/c∗, and [NaOH] = 30 mM. The inset to (b)zooms
on the data at 8h. (c, d) Determination of the volume fraction φe at
which particles are in equilibrium with the clusters. (c) Evolution of the
monomer volume fraction φm at three initial particle volume fractions φ0
for [NaOH] = 10 mM. (d) The equilibrium φe, evaluated as the mean of
the φm values measured after steady state is reached, for [NaOH] = 10,
30, and 50 mM. The three bars indicate three distinct initial monomer
volume fractions φ0 as in (c). Error bars indicate one standard deviation
from the mean.

3.5 Structural measurements indicate that clusters nucleate
classically

The structure of clusters changes over time due to addition and
rearrangement of particles. We characterize this structural evo-
lution in three ways. First, we construct the Voronoi tessella-
tion for particles in clusters of different ages (shown for a rep-
resentative cluster in Fig. 4a). For a close-packed 2-D lattice,
the area fractions occupied by the center particle in the polygons
created by the Voronoi tesselation and the Delaunay triangula-
tion are φhex,V =

√
3π/6 ≈ 0.907 and φhex,D =

√
3π/18 ≈ 0.302, re-

spectively, with φhex,D/φhex,V = 1/3. For the representative clus-

ter from a suspension with 0.3c/c∗ and 30 mM NaOH shown
in Fig. 4a, φhex,V = 0.58± 0.03 and φhex,D = 0.20± 0.01, respec-
tively, for the Voronoi tessellation and Delaunay triangulation,
and φhex,D/φhex,V = 0.34± 0.02. The similarity of the experimen-
tally measured φhex,D/φhex,V to the theoretical prediction suggests
that the clusters are close-packed, with an effective particle size
(∼ 1.5 µm) that is somewhat larger than the hydrodynamic diam-
eter (1.1 µm).

Second, we evaluate the average bond orientational order pa-
rameter ψ6, averaged over all the particles in a cluster.68 For the
representative cluster shown in Fig. 4a, both the number of parti-
cles and ψ6 fluctuate over time. The temporal fluctuations in ψ6

correlate to changes in the number of particles in the cluster as
particles join or leave (Fig. 4(b)).

Third, we calculate the structural order parameter ⟨ψ6⟩ aver-
aged over all clusters in a sample at various time points during
the cluster evolution. Although the cluster number density distri-
bution changes over time (Fig. 3b), ⟨ψ6⟩ ∼ 0.7 is, within the data
uncertainty, independent of time and φ0 (Fig. 4c). These three
data sets reveal that all observed clusters, independent of their
size, age, initial volume fraction, or time of formation, structure
as hexagonal two-dimensional crystals. No disordered clusters,
which may host the nucleation of hexagonal crystalline clusters
if nucleation were nonclassical, are observed. These observa-
tions are consistent with the tenets of classical nucleation the-
ory, which posit that even the smallest domains of a new phase
structure as macroscopic crystals, and are incompatible with non-
classical mechanisms of crystal nucleation, in which crystal nuclei
are hosted by distinctly structured precursors. We posit that crys-
tals in this system nucleate classically because the interparticle
potential contains only a single minimum, and there is no sec-
ondary minimum to stabilize the precursors.

3.6 Clusters maturate via Ostwald ripening

Observation with all tested initial volume fractions φ0 of particles
reveal that the total number of clusters increases during the initial
∼3.5h after supersaturation is imposed and decreases at longer
times (Fig. 5a). The initial increase of the cluster number indi-
cates that new clusters continue to nucleate during the first 3.5h.
Accordingly, greater φ0, i.e. a higher supersaturation, results in
more clusters at all times owing to faster nucleation rate. Both the
average (Fig. 5(b)) and maximum (Fig. 5(c)) cluster sizes grow
with time for the three φ0 examined. Notably, the maximum size
reached by the cluster population decreases as the initial volume
fraction increases. The width of the cluster size distribution also
grows with time, indicating a broader range of cluster sizes (Fig.
5(d)). The observed trends of the cluster sizes and size distri-
butions arise from different sensitivity of the rates of nucleation
and growth to the supersaturation ∆φ = φm −φe. The nucleation
rate B increases as a power law with ∆φ , i.e., B = kb∆φ b, where
kb is a nucleation constant, and typically 5 ≤ b ≤ 10. The cluster
growth rate G, however, is a weaker function of ∆φ , G = kg∆φ g,
where kg is a growth constant and typically 1 ≤ g ≤ 2.69 Owing to
its stronger sensitivity to supersaturation, crystal nucleation dom-
inates crystal growth at higher supersaturations (i.e., larger φ0),
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leading to a greater number of smaller clusters. As the monomer
volume fraction φm decreases from φ0 towards φe (Fig. 3(c)), the
nucleation rate drops. Since nucleation requires a certain thresh-
old supersaturation, i.e., excess of monomers over their equilib-
rium volume fraction φe, one would expect that after φm steadies
at φe no new clusters would nucleate and the number of clusters
would remain steady. The decreasing number of clusters deviates
from this expectation and reveals that maturation processes have
started instead.

The cluster population may maturate through two mechanisms.
First, the cluster may diffuse towards one another and coalesce,
leading to larger new clusters. Coalescence is expected to domi-
nate cluster maturation at the long times necessary for the rela-
tively large clusters to diffuse towards one another.70 A different
mechanism, often referred to as Ostwald ripening, is expected to
dominate at shorter times after nucleation ceases.71,72 Ostwald
ripening is driven by the excess free energy of smaller clusters:
a greater relative number of the particles locate at the periph-
ery, where they bond to fewer neighbors than the particles in
the cluster bulk.73,74 This excess free energy makes the parti-
cle suspension undersaturated with respect to small clusters as
φm approaches φe and they dissolve, releasing monomers. The
monomers diffuse towards larger clusters, with respect to which
the suspension is supersaturated because they hold a lower num-
ber of periphery particles. Mathematical models of the kinetics of
Ostwald ripening predict that the average cluster size increases
as t1/3 if the rate of particle exchange is governed by diffusion be-
tween the clusters (this subcase is referred to as diffusion control)
and as t1/2 if particle association to the large clusters represents
the rate-limiting step (kinetic control).75,76

To distinguish between the two mechanisms of maturation, we
examine the kinetics of cluster growth on long time scales. At
times longer than ≈ 3.5 h, at which the number of clusters is at a
maximum and cluster maturation begins (Fig. 5(a)), the average
number of particles in a cluster N increases as a power law with
time,

N = atb, (3)

where a and b are free parameters (Fig. 6(a)). Power-law fits
to the long-time growth curves in Fig. 6a yield exponents of
0.72±0.01, 0.54±0.01, and 0.57±0.02 for initial volume frac-
tions φ0 = 0.03, 0.04 and 0.05, respectively.

The models of maturation use the average cluster radius as
their main variable, whereas we characterize the cluster size as
the number N of particles in a cluster. The average number of
particles in a cluster N scales with the average cluster radius of
gyration Rg,c via the average fractal dimension df of the clusters,

Rg,c =CN1/df , (4)

where the size constant C = 0.6 µm is comparable to the hy-
drodynamic radius of our particles. At the three tested volume
fractions, the values of df obtained from power-law fits are nearly
constant (Fig. 6(b)); at 15 h, df = 1.795± 0.002, 1.882± 0.002,
and 1.792±0.010 for suspensions with φ0 = 0.03, 0.04, and 0.05,
respectively (Fig. 6(c)). We conclude that df is constant in time
throughout cluster evolution, similar to the order parameter ψ6
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and consistent with expectations for classical nucleation of clus-
ters. Importantly for the identification of the maturation mecha-
nism, all three values of df are close to 2, the value for compact
isometric two-dimensional clusters.
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Using the measured df values, we combine eqns. 3 and 4 to
obtain the scaling of cluster size with time as

Rg,c = aCtb/df . (5)

In our experiments, we find that Rg,c grows with time as a power
law with exponents of 0.40±0.01, 0.29±0.01, and 0.32±0.01 for
initial volume fractions φ0 = 0.03, 0.04 and 0.05, respectively.
These exponents are close to the value of 1/3 expected for Ost-
wald ripening under diffusion-limited conditions.75,76 The expo-
nent characterizing the growth of clusters over time does not in-
crease at longer times (Fig. 6(c)). This observation suggests that
we do not observe coalescence on these time scales, which would
be indicated by a transition to a larger scaling exponent on long
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times.70 This transition would be governed by the characteristic
time for clusters to diffuse over the distances that separate them.
The relatively large cluster sizes impede their diffusion and move
coalescence to times longer than 15 hours that we probe in these
experiments.

4 Conclusions
We develop a colloidal system with tunable interactions to in-
vestigate the nucleation and growth of colloid crystals from di-
lute suspensions. We find that the studied colloidal system ad-
equately models the nucleation and maturation of crystal popu-
lations of small-molecule solutes. The top and bottom walls of
the observation chamber constrain particle motions to two di-
mensions, in which the particles retain fully diffusive behavior
with only moderately impeded diffusion coefficient. The parti-
cles form two-dimensional clusters with nearly perfect hexagonal
structure. At long times, equilibrium sets in between particles in
the suspension and those in the clusters. The volume fraction of
the suspension in equilibrium, the particle solubility, can be pre-
dicted from the depth of the interparticle attraction at low and
moderate electrolyte concentrations. Clusters structure as hexag-
onal two-dimensional crystals independent of their size, age, and
time of formation as well as the suspension initial volume frac-
tion, indicating that the clusters nucleate classically, directly in
the suspension, and cluster nucleation is not hosted and assisted
by distinctly structured precursor, as envisioned in nonclassical
nucleation scenarios. After nucleation ceases owing to depleted
supersaturation, the number of clusters drops and the average
cluster radius grows approximately with the cubic root of time, in-
dicating that the cluster population maturates primarily through
Ostwald ripening, controlled by slow particle diffusion from small
to large clusters. We anticipate that this model system can be used
to explore how interparticle interactions affect the pathways of
crystallization from solution.
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