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Efficient design and synthesis of an amorphous conjugated 
polymer network for a metal-free electrocatalyst of hydrogen 
evolution reaction 

Wakana Hamada,a Mafumi Hishida,b Ryuto Sugiura,a Haruka Tobita,a Hiroaki Imai,a Yasuhiko 
Igarashi,c and Yuya Oaki*,a  

Performances of functional polymers are enhanced by designing the structures in the different hierarchies, such as monomer, 

polymer, secondary structures, and nanoscale morphologies. In the present work, an amorphous conjugated polymer 

network was designed and synthesized to obtain a metal-free electrocatalyst for hydrogen evolution reaction (HER) in an 

efficient manner. A prediction model for the catalytic performance, i.e. overpotential for HER, was constructed using 

machine learning on small data based on the literatures. The straightforward liner prediction model assisted to design the 

network polymer containing quinone and heteroaromatic moieties. The simultaneous multiple reactions of benzoquinone 

(BQ) and benzoxazole (BO) formed the amorphous conjugated polymer network at 200 °C. After the morphology control, 

the BQ-BO polymer showed the overpotential 230 mV for electrochemical HER at 10 mA cm−2, which is one of the highest 

performances in the metal-free electrocatalysts synthesized at low temperature. Moreover, we found that the amorphous 

conjugated polymer networks showed the specific hydration behavior in aqueous media. The results indicate that designing 

amorphous conjugated polymer network coupled with machine learning is a potential approach for development of 

functional materials. 

Introduction 

Assembly states of functional molecules have effects on the 

performances (Fig. 1a). For example, the functional molecules 

are assembled in main- and side-chain polymers, liquid crystals, 

metal-organic frameworks (MOFs), and covalent organic 

frameworks (COFs) to extract and enhance their 

performances.1–9 Our group has proposed amorphous 

conjugated polymer network as a new type of the assembly 

states.10–12 The specific structures have impact on the enhanced 

performances in energy-related applications.10,11 The 

simultaneous reactions of the two or more monomers in 

multiple directions form the random network of the conjugated 

structures and their noncrystalline stackings as shown in Fig. 

1b,c. The functional moieties are randomly dispersed in the 

network without the rigid aggregation as observed in the other 

crystalline assemblies (Fig. 1a). The noncrystalline stacking of 

the conjugated polymer network affords the flexibility related 

to the dynamic molecular motion. In addition, the 

nanostructured materials are formed by the dispersion and 

exfoliation in liquid phase because of the weak stackings. The 

improved performances are expected by these characteristic 

structures. In our previous report, the amorphous conjugated 

polymer network of BQ and pyrrole (Py) showed the HER 

catalytic performance.11 In the present work, Py was changed to 

the other aromatic compounds containing oxygen, such as 

furan (Fu), benzofuran (BF), oxazole (Ox), and BO, because the 

hydrophilicity is a potential significant factor for the HER 

catalyst used in the aqueous phase. Therefore, the 

heteroaromatic compounds were selected based on the 

prediction of the catalytic performance, reactivity to BQ 

monomer, and hydrophilicity. The random copolymerization 

was achieved by BQ and BO via the simultaneous electrophilic 

substitution and pericyclic reaction (Fig. 1b,c). Moreover, the 

amorphous conjugated polymer networks containing BQ 

showed the specific hydration behavior by terahertz time-

domain spectroscopy (THz-TDS). 

Machine learning has been applied to exploration of new 

materials, optimization of processes, and enhancement of 

performances.13–20 However, big data sufficient to machine 

learning is not always available particularly in conventional 

experiments in laboratory. Our group has studied sparse 

modeling for small data (SpM-S) to construct prediction models 

based on small data with combination of machine learning and 

chemical insights (Fig. 1d).22–27 In SpM-S, the straightforward 

linear-regression model is prepared using a small number of the 

significant descriptors. The descriptors are first extracted using 
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machine learning and then selected with combining our 

chemical insight. Our method has advantages to construct 

prediction models based on small data compared with the other 

machine-learning algorithms.24 In the present work, the method 

was applied to construct the overpotential (ΔE (>0)) predictor 

of metal-free HER catalyst. In general, Gibbs energy for 

adsorption of hydrogen on the catalyst (ΔGH*) is used as a metric 

of the activity.28,29 However, ΔGH* of all the potential organic 

molecules is not easily calculated because of the high 

calculational cost. If the other metrics, such as ΔE and Tafel 

slope, are predicted in low calculation cost, the molecular 

design and synthesis can be accelerated to achieve the higher 

catalytic performance. Moreover, our SpM-S uses the 

descriptors with low calculation cost to construct the predictor. 

 
Fig. 1.   Schematic illustration of designing a functional amorphous conjugated 

polymer network. (a) Models of side- and main-chain polymers, crystalline 

frameworks (MOFs and COFs), and conjugated polymer networks using hexagonal 

functional unit (yellow) and linker (blue). (b) Simultaneous multiple reactions of 

BQ and BO including the electrophilic substitution (red arrow) and pericyclic (blue 

arrow) reactions. (c) Unit structure and schematic illustration of the BQ-BO 

amorphous conjugated polymer network. (d) A general scheme of SpM-S for 

construction and application of the performance predictor combining machine 

learning and our chemical insight based on small data. 

Hydrogen (H2) is a promising clean energy source without 

emission of carbon dioxide (CO2) during the use. Electrocatalyst 

is required for electrochemical HER, one of the efficient routes 

to produce H2.29–35 A variety of metal-free electrocatalysts, such 

as nanocarbons and COFs, have been studied as alternatives to 

platinum (Pt) and metal-based materials.10,30,33,36–63 Here ΔE (at 

−10 mA cm−2) and Tafel slope for electrochemical HER are 

summarized to compare the performances as the metal-free 

catalysts measured without the use of metal counter electrode 

(Fig. S1 and Table S1 in the Electronic Supplementary 

Information (ESI)).36–58 The catalytic performance has been 

approached to that of Pt. For example, the heteroatom-doped 

nanocarbons showed ΔE lower than 150 mV on the curves of 

linear sweep voltammetry (LSV).42,49,53 However, the synthetic 

temperature of the nanocarbons is generally higher than 800 °C 

(Fig. S1 and Table S1 in the ESI). Whereas H2 is used to reduce 

the emission of CO2, the high synthetic temperature of the 

catalysts contradicts the intention. ΔE = 207 and 220 mV were 

achieved using the graphitic caron nitride on graphene 

synthesized at 180 °C and the oxidized multi-walled carbon 

nanotubes treated at 120 °C, respectively.41,52 However, these 

materials need the nanocarbons synthesized at high 

temperature. A recent report showed ΔE = 200 mV for the 

triazine-based COF synthesized at 150 °C for 72 h.58 In the 

present work, the molecular design of a new metal-free 

electrocatalyst was conducted using an assistance of machine 

learning on the small data extracted from the literatures (Fig. 

1d). The BQ-BO polymer was prepared by microwave-assisted 

synthesis at 200 °C for 1 h. After the morphology control, the 

HER catalytic activity was ΔE = 230 mV, which is one of the 

highest in the metal-free electrocatalysts prepared at low 

temperature (Fig. S1 and Table S1 in the ESI).36–58     

Results and discussion 

An overpotential predictor for metal-free HER catalyst.    

A prediction model of ΔE was constructed based on small data 

collected from the literatures (Figs. 1d and 2 and Scheme S1 and 

Table S2 in the ESI).11,38,49,55–63 The catalytic performances are 

changed by not only the molecular structures but also the other 

factors, such as assembly state, higher-ordered structures, and 

particle size. Herein, we assume that the factors other than the 

molecular structures are optimized to achieve the best 

performances in each previous report. The objective variable (y) 

was defined as the measured potential at −10 mA cm−2 (y = P 

[mV] vs. RHE = − ΔE) in the LSV curve, a standard metric for the 

catalytic performance. The data for 19 compounds (1–19), such 

as heteroatom-doped graphene and covalent organic 

framework, were collected from 12 literatures (Scheme S1 in 

the ESI).11,38,49,55–63 When polymeric materials, such as graphene 

and COF, were used, the monomeric repeating units were 

extracted to calculate xn (Scheme S1 in the ESI). Table 1 

summarizes the explanatory variables (xn: n = 1–11) as the 

potential descriptors: the energy levels of the highest occupied 

molecular orbital (HOMO) (EHOMO0, x1 / eV) and lowest 

unoccupied molecular orbital (LUMO) (ELUMO0, x2 / eV), the 

energy gap between HOMO and LUMO (Eg,HOMO-LUMO, x3 (> 0) 

/eV), the number of the unoccupied orbitals (Norb / –) with the 

energy level (E) lower than E = 0 (Norb, ELUMO0 ≤ E < 0, x4 / –), the 

sum of the absolute values of E within ELUMO0 and 0 (Σ|E|, 

ELUMO0 ≤ E < 0, x5 / eV), polarizability (x6 / 1040 C2 m2 J−1), dipole 

moment (x7 / Debye), Hansen solubility-(similarity-) parameter 
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(HSP) distance to water as the electrolyte solution (HSP distance, 

x8 / –), the maximum and minimum values of the partial charge 

density (PCDmax and PCDmin, x9 and x10 / –, respectively), the ratio 

of the number of the hetero atoms to the total number of atoms 

except hydrogen (Rhetero, x11 / –). These xn (n = 1–11) were 

selected based on the following our chemical insights to study 

the effects of the molecular structures on ΔE: the reactivity of 

the redox reactions (xn: n = 1–5), the charge distribution (xn: n = 

6, 7, 9, 10), the affinity to electrolyte solution (xn: n = 8), and the 

effects of heteroatoms (xn: n = 11). These values of the 

compounds 1–19 were calculated to prepare the training 

dataset.  

Table 1   List of the explanatory variables (xn: n = 1–11). 

n / – Explanatory variables xn Unit 

1 a EHOMO  eV 

2 a ELUMO  eV 

3 a Eg,HOMO-LUMO eV 

4 a Norb, ELUMO0 ≤ E <0 – 

5 a Σ|E|, ELUMO0 ≤ E <0 eV 

6 a Polarizability 
1040 C2 m2 

J−1 

7 a Dipole moment Debye 

8 b HSP distance – 

9 a PCDmax – 

10 a PCDmin – 

11 c Rhetero – 

aCalculation values based on density function theory (DFT). bCalculation 

values based on Hansen solubility (similarity) (HSP) parameters. cCalculation 

value based on the molecular structure.  

The overpotential predictor was constructed by SpM-S using 

the small dataset (Fig. 2).22 Exhaustive search for linear 

regression (ES-LiR) was carried out using the dataset containing 

19y and xn (n = 1–11) to visualize the contribution of each xn in 

the weight diagram (Fig. 2a). After the linear regression models 

were exhaustively prepared by all the combinations of xn, i.e. 

211−1 (= 2047) patterns except the case that no descriptors are 

selected, the models were sorted in the ascending order of 

cross validation error (CVE) values. Cross-validation is a 

technique for evaluating a machine learning model and 

approximately estimating prediction accuracy from a limited 

amount of data. Leave-one-out cross-validation was used in the 

present study. Their positive and negative coefficients of the 

used descriptors were visualized by the warm and red colors in 

the weight diagram, respectively (Fig. 2a). The densely colored 

xn means the frequently extracted descriptors. The warmer and 

cooler colors imply the stronger contribution to y. Three 

descriptors x7, x9, and x10 were selected by the combination of 

the weight diagram and our chemical insight. The linear 

regression model eqn (1) was constructed to estimate the 

predicted y (yʹ) using three descriptors with the coefficients 

converted to the normalized frequency distribution (mean 0 

and standard deviation 1). 

 yʹ = 42.00x7 + 48.69x9 – 48.97x10 – 344.5 … (1) 

The relationship between the estimated and measured 

overpotentials (yʹ-y) had root mean squared error (RMSE) 121.0 

mV for the training dataset (Fig. 2b). The average RMSE was 118 

± 12.7 mV for the training and 144 ± 118 mV for the test in ten-

fold cross validation using the dataset (Fig. S2 in the ESI), 

supporting the validity of the selected descriptors. Although the 

predictor is a simple linear regression using three descriptors, 

ΔE of new compounds can be estimated using eqn (1). The 

positive correlations of x7 (dipole moment) and x9 (maximum of 

the partial charge density) and negative correlation of x10 

(minimum of the partial charge density) imply that the more 

charge-localized state in the molecule facilitates adsorption of 

proton to promote HER. In 15 compounds with the predicted ΔE 

lower than 400 mV, 11 compounds actually showed ΔE lower 

than 400 mV (the dashed lines and arrows in Fig. 2b). Although 

the accuracy 73.3 % is not so high, the predictor can be used as 

a simple guideline to estimate ΔE with low calculation cost. In 

the present work, the predictor was used for the molecular 

design of amorphous conjugated polymer networks. 

Professional chemists have their own empirical design 

strategies of molecules for the catalysts in brain. The fact means 

that the specific parameters related to the catalytic 

performance, i.e. the descriptors, are not elucidated for the 

other chemists. In the present work, machine learning assists 

the construction of the linear regression model eqn (1) 

comprising of the specific descriptors and their coefficients. The 

model represents the corelated parameters and their weights 

to the catalytic performance. The straightforward predictor can 

assist the further design and exploration of new potential 

molecules for HER catalysts by not only our group but also the 

other researchers 

 

 
Fig. 2.   SpM-S for construction of the prediction model. (a) Weight diagram 

representing the coefficients of each xn in the constructed models with the 
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ascending order of CVE values (the smallest 100). (b) Relationship between the 

estimated and measured (reported) potential (−ΔE: black and red circles for the 

training and test data, respectively).  

New compounds 20–25 that were not used in the training data 

were collected from the literatures (Scheme S2 and Table S2 in 

the ESI).64–68 The relationship between the predicted and 

reported values was studied using the test data to validate the 

prediction model (the red circles in Fig. 2b, RMSE 211 mV). As 

all these six catalysts showed predicted ΔE lower than 400 mV, 

the five compounds had the actual ΔE lower than 400 mV. The 

accuracy is calculated to be 83.3 %, which is not different from 

73.3 % for the training data. The results imply that the predictor 

is used for the exploration of new potential HER catalysts. The 

precise ΔE is not predicted because of the calculation based on 

the simple model and unit molecular structure. The model can 

be used to screening the new potential compounds. 

 

Molecular design of amorphous conjugated polymer 

networks containing quinone moiety.    

In our previous work, the amorphous conjugated polymer 

network of BQ and Py was applied to the electrocatalyst.11 Our 

intention here is to find another heteroaromatic compound 

instead of Py for enhancing the catalytic activity. The BQ-based 

copolymer was designed using commercially available furan and 

oxazole derivatives furan (Fu), benzofuran (BF), oxazole (Ox), BO 

and F1–F10 because of the potential hydrophilicity as 

mentioned later (Scheme 1). BQ was virtually reacted with Fu, 

BF, Ox, BO, and F1–F10 to form the diads on the assumption of 

electrophilic substitution (Fig. 1b and Scheme 2). The ΔE of the 

prepared 14 diads was predicted using the model eqn (1). The 

predicted ΔE (ΔEpred) of these diads were lower than 410 mV and 

the average was 368 mV (Table 2). For example, the virtually 

generated diads showed ΔEpred = 410 mV for BQ-Fu, 364 mV for 

BQ-BF, 400 mV for BQ-Ox, and 356 mV for BQ-BO. As the 

accuracy of the predictor was around 70 % for the compounds 

with ΔEpred < 400 mV, the prediction results imply the potentials 

of the furan and oxazole derivatives. In addition, the 

hydrophilicity of the furan derivatives is also an important factor 

to improve the catalytic performance because the catalyst is 

used in aqueous phase. The HSP distances of the diads based on 

the furan derivatives to water were calculated to be 10.8 for BQ-

Fu, 11.2 for BQ-BF, 10.8 for BQ-Ox, and 11.1 for BQ-BO. These 

values were smaller than those of the diads based on Py and 

thiophene (Tp), such as 12.5 for BQ-Py and 12.6 for BQ-Tp. The 

smaller HSP distance indicates the higher affinity to the solvent. 

In this manner, furan derivatives were selected based on the 

prediction of the catalytic performance and hydrophilicity. 

The synthetic experiment was performed using the furane 

derivatives with the simple structures, namelyFu, BF, Ox, and 

BO, to study the reactivity for the polymerization because the 

reactivity is not predicted by the model at the present state.  

 
Scheme 1.   Molecular structures of Fu, BF, Ox, BO, and F1–F10 for the virtual 

generation of the diads with BQ. 

 

 
Scheme 2.   Molecular structures of the virtually generated diads based on BQ and furane 

derivatives Fu, BF, Ox, BO, and F1–F10. 

 

Table 2.   Predicated ΔE of the diads based on BQ and furane derivatives. 

BQ- FU BF Ox BO F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

ΔE / mV 410 364 400 356 404 387 344 358 363 288 334 387 397 355 

ΔE of the virtually prepared diads in Scheme 2 were calculated using the prediction 

model eqn (1). 
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BQ powder and the heteroaromatic compounds (Fu, BF, Ox, 

and BO) were mixed and then reacted under the microwave 

irradiation without addition of solvents at 170 °C for Fu and Ox 

and 200 °C for BF and BO for 1 h. The resultant materials were 

purified under vacuum condition at 190 °C for 16 h to remove 

the remaining monomers and oligomers. The detailed 

procedure was described in the ESI. The BQ-BO polymer with 

the black color was obtained with the average yield 13.3 %. In 

contrast, the polymerization products were not obtained for Fu, 

BF, and Ox with the sufficient yields.  

 

Structures of the BQ-BO amorphous conjugated polymer 

network.    

The resultant BQ-BO polymer showed the weight loss in the 

range of 400 to 600 °C originating from the combustion in 

thermogravimetry (TG) analysis under air atmosphere (Fig. 3a). 

The weight loss was observed in the higher temperature range 

compared with that of the monomeric BQ and BQ-

hydroquinone (HQ) charge-transfer complex (BQ-HQ). The 

temperature range of the weight loss was higher than that of a 

commercial polypyrrole (PPy) and similar to that of a 

commercial graphene oxide (GO). The TG analysis implies the 

formation of not the chain-like but the network polymer. When 

the resultant BQ-BO was dried at 60 °C for 6 h, the weight loss 

was observed in the range of 150–400 °C. The fact indicates that 

the removal of the remaining low-molecular-weight contents 

from the resultant polymer requires vacuum drying at 190 °C for 

6 h. 

The absorptions corresponding to O–H, C–H, C=O, C=C, C=N, 

and C–O–C were observed in the Fourier-transform infrared (FT-

IR) spectrum as follows (Fig. 3b,c): O–H stretching vibration (A), 

C–H stretching vibration (B), C=O stretching vibration (C), C=C 

stretching vibration (D), both C=N and C–O–C stretching 

vibrations (E, overlapped). The estimated structural units of BQ-

BO have these bonds (Fig. 3c). In addition, the related bonds 

were detected in C1s, O1s, and N1s peaks of X-ray 

photoelectron spectroscopy (XPS) (Fig. S3 in the ESI). The 

formation of the estimated polymer network was supported by 

solid-state 13C nuclear magnetic resonance (NMR) spectroscopy 

(Fig. S4 in the ESI). The weight ratio of C, H, N, and O (others) 

was measured to be 67.0 : 3.1 : 2.7 : 27.1 by elemental analysis. 

Based on the weight ratio, Fig. 3d shows the repeating units and 

their molar ratio. The units include 48 % of the HQ moiety as the 

reduced state of BQ. The composition of the estimated 

structure was calculated to be C : H : N : O = 67.1 : 2.8 : 2.6 : 27.5. 

The measured and calculational compositions were consistent 

with each other within 0.5 %. These structural analyses indicate 

the formation of the BQ-BO network polymer, as shown in Fig. 

1c.  

 

 
Fig. 3.   Structural analyses of BQ-BO. (a) TG curves of BQ-BO (orange), BQ (black), BQ-

HQ charge-transfer complex (green), PPy (blue), and GO (dashed line). (b) FT-IR spectra 

of BQ-BO (top), BQ (middle), and BO (bottom). (c) Molecular structures of the monomers 

and BQ-BO oligomeric unit. (d) Composition of the repeating units in BQ-BO. 

The G and D bands characteristic of graphitic structure and 

its defect were observed at 1350 and 1580 cm−1 in the Raman 

spectrum, respectively (Fig. 4a). The peaks were broadened 

compared with those of a commercial glassy carbon (GC) and 

GO. UV-Vis-near infrared (NIR) spectrum of the BQ-BO polymer 

showed the absorption in the range of 200 to 1800 nm (Fig. S5 

in the ESI), whereas the charge-transfer complex of BQ-HQ had 

the absorption edge around 800 nm. The Raman and UV-Vis 

spectra indicate that BQ-BO contains the extended conjugated 

structure like a graphitic network.  

In this manner, an increase in the molecular weight was 

supported by TG-DTA. The functional groups in the polymer 

network were analyzed by FT-IR. The XPS and NMR analyses 

indicates the inclusion of all the chemical bonds in the 

estimated network structure as shown in Fig. 3d. In addition, 

formation of the π-conjugated network structures is supported 

by the UV-Vis-NIR and Raman spectra. Fig. 3d shows one of the 

possible structures consistent with all these analytical results. 

The broadened and weak halo was observed around 2θ = 

25 ° on the X-ray diffraction (XRD) pattern (Fig. 4b). Commercial 

GO, GC, and graphene (reduced GO) showed the peaks 

corresponding to the stacking of the graphitic layers around 2θ 

= 25 °. The diffraction of BQ-BO was weaker and broader than 

that of the references. The XRD analysis indicates that the BQ-

BO conjugated polymer network forms the low-crystalline 

stacking.  
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Fig. 4.   Raman spectra (a) and XRD patterns (b) of BQ-BO and its reference 

commercial nanocarbons.  

 
Fig. 5.   Morphology and particle size of BQ-BO. (a,b) SEM image of the BQ-BO bulk 

(a) and bulk-nano sample after the dispersion in acetone (b). (c,d) TEM image (c) 

and DLS particle-size distribution (d) of BQ-BO dispersed in acetone.  

The irregularly shaped BQ-BO particles 1–50 μm in size were 

observed on the images of scanning electron microscopy (SEM) 

(Fig. 5a and Fig. S6 in the ESI). These bulk particles were 

dispersed in organic media, such as acetone and ethylbenzene, 

under ultrasonication. The size of the bulk particle reduced less 

than 20 μm in size after the dispersion (Fig. 5b and Fig. S7 in the 

ESI). In addition, the nanoparticles smaller than 500 nm in size 

appeared in addition to the original bulk particles on the SEM 

and transmission electron microscopy (TEM) images (Fig. 5b,c 

and Fig. S7 in the ESI). The energy-dispersive X-ray (EDX) 

analysis implies that each BQ-BO particle contained C, N, and O 

(Figs. S6 and S7 in the ESI). The BQ-BO particles showed no 

diffraction rings in the selected-area diffraction (SAED) pattern 

and lattice fringes in the high-resolution TEM (HRTEM) image 

(Fig. S8 in the ESI), supporting the amorphous nature of BQ-BO. 

The BQ-BO samples including the bulk and nanoparticles (bulk-

nano) after the dispersion in acetone contained C, N, and O 

components without the other elements in the EDX analyses of 

the SEM and TEM observations (Fig. S8 in the ESI). The 

dissolution and/or exfoliation generate the smaller particles. 

Two peaks were observed on the particle-size distribution by 

dynamic light scattering (DLS) (Fig. 5d). The dispersion liquid 

containing bulk and nanoparticles (bulk-nano) were used to 

prepare the electrode for HER (Fig. 6). 

 

HER catalytic performances of BQ-BO.   

The dispersion liquid containing the mixture of the bulk and 

nanoparticles was dropped on a commercial GC electrode (Fig. 

5b,c). The bulk BQ-BO particles before the dispersion was used 

as the reference sample (Fig. 5a). The GC electrode loading the 

BQ-BO sample, graphite rod, and Ag/AgCl electrode were used 

as the working, counter, and reference electrodes, respectively. 

The electrodes were set in a twin-beaker cell with 0.5 mol dm−3 

sulfuric acid (H2SO4) as the electrolyte.  

 
Fig. 6.   LSV curves (a) and Tafel slopes (b) of the bulk (green) and bulk-nano (blue) 

BQ-BO samples and reference Pt and GC (black).  
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Cyclic voltammetry (CV) showed the broadened redox peaks 

corresponding to the anthraquinone (AQ) and BQ moieties 

around −0.1 and 0.7 V vs. RHE (RHE: −0.199 V vs. Ag/AgCl), 

respectively (Fig. S9 in the ESI). The presence of the AQ and BQ 

moieties is consistent with the estimated structure in Fig. 1c. 

Chronoamperometry (CA) was performed at −0.3 V vs. RHE for 

5 h to reduce the BQ moiety to HQ state with recovering the π 

conjugation in the network (Fig. S9 in the ESI). Then, the HER 

electrocatalytic activity was measured by LSV in the range of 0 

and −0.6 V (vs. RHE) at 5 mV s−1 (Fig. 6a). The bulk-nano BQ-BO 

sample showed ΔE = 230 mV (at −10 mA cm–2) (Fig. 6a), whereas 

ΔE of the bulk BQ-BO was 279 mV. The catalytic performance of 

the bulk-nano BQ-BO was reproducible for the five different 

samples (Fig. S6 in the ESI). The Tafel slope, representing the 

kinetics of HER, was 138 mV dec−1 for the bulk-nano and 190 mV 

dec−1 for the bulk samples (Fig. 6b). ΔE of the bulk-nano BQ-BO 

was one of the smallest values in the metal-free electrocatalysts 

synthesized lower than 200 °C (Fig. S1 in the ESI).11,38,49,55–63   

The enhanced HER performance is achieved by the specific 

morphologies and molecular structures. The nanostructures 

with the BQ-BO bulk particle contribute to an increase in the 

specific surface area for the catalytic reaction. The bulk particles 

ensure the large interspace for diffusion of the electrolyte 

solution without the dense aggregation of the nanoparticles. 

The electrochemical double-layer capacitance (Cdl) of the BQ-

BO bulk-nano sample was estimated to be 4.3 mF cm−2 from the 

cyclic voltammograms (Fig. S9 in the ESI). The Cdl value was 

comparable to the other HER catalysts based on various 

nanocarbons with the graphitic structures, such as Cdl = 2.4,37 

3.6,53 5.0,54 and 2.2 mF cm−2,57 in previous works, although the 

larger values, such as 22.353 and 24.4 mF cm−2,54 was observed 

for the more porous structures. These facts imply that the 

enhanced electrochemical surface area of the BQ-BO bulk-nano 

particles is derived from the specific morphology. In addition, 

the BQ-BO polymer network has the suitable structures in 

molecular level. The conductivity is derived by the conjugated 

structures. The charge transfer resistance (Rct) was measured to 

be 90.9 Ω even for the bulk BQ-BO particles before the 

dispersion in acetone by electrochemical impedance 

spectroscopy (EIS) (Fig. S9 in the ESI). Rct in the same order of 

magnitude was reported in the previous works about the metal-

free HER catalysts.61,69 The BQ-BO polymer has the sufficient 

conductivity for the HER reaction.  

The heteroatoms, such as N and O, play important roles for 

the generation of the active sites. DFT calculation was 

performed to study the active sites as electrocatalyst. In 

previous works, the Gibbs energy for the hydrogen adsorption 

(ΔGH*) is regarded as a significant parameter related to the HER 

catalytic activity on the metal surfaces.70,71 When the value of 

the calculated ΔGH* is positive and negative, the rate 

determining step is formation of the intermediate adsorbed 

hydrogen (H*) on the surface and desorption of H* to generate 

H2, respectively. The higher activity is achieved by the catalysts 

with the smaller absolute value of ΔGH* (|ΔGH*|). In recent years, 

the calculational study is applied to not only metals but also 

metal-free HER catalysts.36–38,58,59,61,69,72 In the present work, 

the active sites with the smaller |ΔGH*| were explored in the 

unit structure of BQ-BO (Fig. 7). Coronene was used as a 

reference structural unit of graphitic carbon without containing 

heteroatoms (Fig. 7a). ΔGH* was calculated to be 2.21 eV for 

adsorption of H* on the plane of sp2 carbon (the site 0 in Fig. 

7a). The BQ-BO polymer showed ΔGH* smaller than 1.5 eV on 

the neighboring carbons of the heteroatoms (the sites 1, 2, 4, 

and 6 in Fig. 7b), whereas ΔGH* larger than 3.0 eV was calculated 

with the direct adsorption of H* on the heteroatoms. Although 

the |ΔGH*| values themselves are not so small compared with 

those of the other metal-free HER catalysts in the previous 

works, the neighboring carbons of the heteroatoms with |ΔGH*| 

lower than that of the inert sp2 carbon can act as the potential 

active sites. The results imply that the BQ-BO polymer has the 

larger amount of the active sites homogenously distributed in 

the network structure. Moreover, the BQ and HQ moieties have 

effects on the hydrophilicity in aqueous phase. In this manner, 

the enhanced HER catalytic performance is achieved using the 

BQ-BO polymer. 

 

 
Fig. 7.   ΔGH* on the sites 0 (a) and 1–6 (b) estimated by DFT calculation. (a) A simplified 

model for graphitic carbon without any heteroatoms as a reference. (b) Unit structure of 

BQ-BO polymer with the potential active sites 1–6. 

 
Fig. 8.   Hydration state of the amorphous conjugated polymer networks. (a–f) 

Photographs of BQ-Py (a), BQ-BO (b), AB (c), GO (d), graphene (e), and GC (f) 

dispersed in NaOH aq. (g) Imaginary part of the dielectric constants in THz 

frequency region of purified water, NaOH aq, and dispersion liquids containing 

BQ-BO and BQ-Py in 1mol dm−3 NaOH.  

 

Hydrophilicity of the amorphous conjugated polymer 

networks.    

Here we found the specific hydrophilicity of the amorphous 

conjugated polymer networks. Hydrophilicity can be a potential 

factor related to the enhanced HER catalytic performance in 
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aqueous phase. The dispersibility and hydration behavior of the 

BQ-BO polymer in aqueous phase was compared with those of 

typical carbon materials, such as commercial acetylene black 

(AB) carbon, GO, graphite, and GC (Fig. 8). In addition, the BQ-

Py polymer in our previous work was used as another sample.11 

The powder of BQ-BO, BQ-Py, AB, GO, graphite, and GC, was 

dispersed in 1 mol dm−3 sodium hydroxide (NaOH) aqueous 

solution at the concentration 10 wt%. Interestingly, BQ-BO and 

BQ-Py were dispersed in the NaOH solution (Fig. 8a,b). In 

contrast, the other reference carbons were immiscible and 

segregated from the aqueous phase (Fig. 8c–f). The 

photographs imply the specific affinity of BQ-BO and BQ-Py to 

aqueous phase. 

The hydration state of BQ-BO and BQ-Py polymers was 

analyzed using THz-TDS (Fig. 8g). THz-TDS is used to analyze the 

hydration state, including water weakly affected by solutes, and 

the method was applied to study the hydration behavior of 

macromolecules and small molecules.73–84 In the THz frequency 

band, there exists collective rotational relaxation dynamics of 

water (slow relaxation), dynamics of water isolated from 

hydrogen bonds (fast relaxation), and stretching vibrations 

between water molecules.85–87 Hydration amount were 

obtained with the same method in literatures.75,77,81,82 When 

water is bound to a solute, the slow relaxation becomes slower 

than the bulk water, and the intensity of the slow relaxation of 

the bulk water is reduced by the decrease in the amount of bulk 

water. Primarily, the amount of hydration water can be 

quantified from this decrease in bulk water. Since the amount 

of fast relaxation also changes slightly, we assume that slow 

relaxation and fast relaxation are independent and added this 

change to the hydration amount. The spectrum shown in Fig. 8g 

was fitted with the following eqn (2),75–77 and obtained 

parameters were used to calculate the amount of hydration 𝑛 

from eqn (3).74 Because of the accuracy of the measurement, 

only the imaginary part was used in the analysis. 

𝜀̃(𝜔) = 𝑐 (
∆𝜀slow

1+𝑖𝜔𝜏slow
+

∆𝜀fast

1+𝑖𝜔𝜏fast
+

𝐴s

𝜔s
2−𝜔2+𝑖𝜔𝛾s

).  (2) 

𝑛 = 𝑁 (

∆𝜀slow
water−∆𝜀slow

solution

𝑔slow
−

∆𝜀fast
solution−∆𝜀fast

water

𝑔𝑓𝑎𝑠𝑡

∆𝜀slow
water

𝑔slow
+

∆𝜀fast
water

𝑔fast

)  (3) 

where ∆𝜀slow  and ∆𝜀fast  are the strengths of slow and fast 

relaxation, τslow and τfast are their relaxation times, respectively. 

The third term in the parentheses indicates the intermolecular 

stretching vibration between the water molecules. 𝐴s, 𝜔s, and 

𝛾s are the amplitude, angular frequency, and damping constant, 

respectively, and 𝑐 represents the volume fraction of water in 

the system. The weight fraction was used as an approximation 

of the volume fraction. The superscripts “water” and “solution” 

in eqn (3) denote the results of pure water and solutions, 

respectively. 𝑁 is the total weight of water per unit weight of 

solute in the solution. 𝑔slow=2.9 and 𝑔fast=1.0 are Kirkwood’s 

correlation factors for slow and fast relaxation, respectively.79 

As the solution contains not only BQ-BO or BQ-Py but also NaOH, 

the effect of hydration by NaOH was subtracted after 

calculating the total hydration of the solution. Thus, the results 

for NaOH solution are also displayed in Fig. 8g. The spectrum 

was higher in NaOH solution than in pure water, indicating 

negative hydration.88 The calculated amount of the hydrated 

water was 𝑛 = 1.55 g for 1 g BQ-BO and 𝑛 = 2.48 g for 1 g BQ-

Py. The details of the calculation procedure were summarized 

in Supporting Information. The results imply that the 

amorphous conjugated polymer networks have the specific 

affinity to water molecules compared with the conventional 

carbon materials, even though the polymer is comprised of the 

rigid conjugated moiety. Moreover, the BQ-based conjugated 

polymers can be regarded as a new family of aquatic functional 

materials.  

Conclusions 

The present work showed the potentials of amorphous 

conjugated polymer networks for energy-related applications, 

such as electrocatalysts for HER. Prior to the molecular design 

and synthesis, a straightforward prediction model of metal-free 

HER electrocatalysts was constructed on small data based on 

the literatures using SpM-S. The ΔE predictor facilitates the 

molecular design of the high-performance catalysts. Based on 

the prediction, a couple of furane derivatives were selected as 

the monomer for the polymerization with BQ. The BQ-BO 

amorphous conjugated polymer network was obtained by 

microwave-assisted synthesis at 200 °C. After the dispersion in 

an organic medium, the resultant BQ-BO polymer with both the 

bulk and nanoparticles showed ΔE = 230 mV, which is one of the 

highest performances in the metal-free electrocatalysts 

synthesized lower than 200 °C. Metal-free HER catalysts 

alternative to Pt can be designed based on the present results. 

We found that BQ-BO and BQ-Py had the specific hydration 

state compared with the other nanocarbons. Amorphous 

conjugated polymer network with the enhanced performances 

can be designed and synthesized based on the prediction model.  
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