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Here, we report an air-free approach to infiltrate isostructural metal-organic 
frameworks (MOFs), M-MOF-74 (M = Cu, Mn, Zn, Mg), with conjugated 
acceptor, 7,7,8,8-tetracyanoquinodimethane (TCNQ). The TCNQ@M-MOF-74 
compounds exhibit a striking correlation between their bulk conductivities 
and the open d shell variants (Cu, Mn), arising from TCNQ p-doping the MOFs. 
Importantly, conjugation of the guest molecule is a prerequisite for inducing 
electrical conductivity in these systems. 

Combining the tunability and porosity of metal-organic 
frameworks (MOFs) with electronic (semi-)conductivity has driven 
the development of electronics, such as chemical sensors,1–3 
photovoltaics,4–7  low-k dielectrics,8,9 and non-volatile memory 
elements.10 However, most existing MOFs are insulators due to the 
poor overlap between π orbitals of the organic linkers and d orbitals 
of the metal ions, suppressing charge transfer. By judiciously 
selecting metal ions with high-energy valence electrons and organic 
linkers that form coordination bonds with increased orbital 
delocalization between metal and linker, conductive MOFs have 
been realized.6,11–14 

A paradigm-shifting alternative approach, which some of our 
team explored, successfully rendered the insulating Cu3(btc)2 MOF 
into an electrically conductive one by introducing a conjugated and 
redox-active guest molecule, 7,7,8,8-tetracyanoquinodimethane 
(TCNQ).15 Since then, we also uncovered that the preferential 
ordering of the TCNQ molecules along the (111) lattice plane within 
HKUST-1 and the TCNQ bridging coordination motif to two adjacent 
copper paddlewheels facilitate conductivity.16 Recently, others 
adapted this infiltration strategy for M-MOF-74 (M = Co,1 Mn17) with 
densely packed open metal sites (OMS)18–26 for effective host-guest 
interaction. To date, none have elucidated the nature of the host-

guest complex or proposed conductivity mechanisms in the 
TCNQ@M-MOF-74 system. In general, the interaction between the 
guest and the host has been characterized as ‘redox doping’,27,28 
resulting in charge transfer and the formation of mobile charge 
carriers in the MOF conduction or valence bands and thus increased 
electrical conductivity.29,30 However, these previous studies failed to 
address additional fundamental questions, such as: to what extent 
do open d shells of metal ions in M-MOF-74 influence charge transfer? 
What role does conjugation play in TCNQ in influencing electrical 
conductivity? How does oxygen affect the stability of TCNQ? Through 
what charge transport mechanism does TCNQ induce MOF 
conductivity?

These unanswered questions motivated us to closely scrutinize 
the nature of TCNQ@M-MOF-74 interactions that contribute to bulk 
conductivity. Recently, Bláha and colleagues confirmed charge 
transfer between TCNQ and Mn-MOF-74 by diagnostic Raman 
stretches, but their approach resulted in oxidized TCNQ.17 Samples 
were further handled under ambient conditions, contaminating the 
host-guest system with oxygen. Our work expands upon their 
integral efforts, applying an air-free TCNQ infiltration approach into 
isostructural M-MOF-74, where M is divalent Mg, Mn, Cu, and Zn. 
Through rigorous exclusion of oxygen, our inert infiltration method 
yields no oxidized TCNQ. The coordination of TCNQ to the OMS of M-
MOF-74 was confirmed by spectroscopy. Strikingly, we reveal that 
M-MOF-74 with open d shells and conjugated guest molecules are 
critical in forming charge transport networks, which are supported 
by temperature-dependent electrical conductivity measurements 
and density functional theory (DFT) calculations. Importantly, we 
propose a plausible mechanism to rationalize TCNQ binding to OMS 
of M-MOF-74 framework to form a continuous network. Together, 

a Department of Chemistry and Biochemistry, California State University, 
Chico, Chico, CA 95973, United States. Email: mso@csuchico.edu  
Department of Physics, University of Illinois, Chicago, Chicago, IL, United 
States.
b Sandia National Laboratories, Livermore, CA 94551, United States.

Electronic Supplementary Information (ESI) available: Procedures, materials, and 
instrumentation; characterization (PXRD, SEM, Raman, EA, UV, DRS, 
conductivity). See DOI: 10.1039/x0xx00000x

Page 1 of 6 Journal of Materials Chemistry C



COMMUNICATION Journal Name

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust marginsPlease do not adjust margins

the experimental and theoretical results in this work shows that 
TCNQ p-dopes the M-MOF-74 (M = Cu, Mn) hosts, facilitating 
through-bond charge transport via conjugated TCNQ guests.

The powder x-ray diffraction (PXRD) scans confirm the identity of 
the M-MOF-74 (M=Cu, Mn, Zn, Mg) powders. PXRDs indicate M-
MOF-74 are indeed isostructural, differing only differ by the metal 
ion (Figures 1a and S2). After TCNQ infiltration (Figures 1b-1e and S2), 
the MOFs not only remained crystalline but retained the same rough, 
porous morphology with some polycrystallinity. The presence of 
TCNQ in the MOFs was also confirmed by elemental analysis (Table 
S1). There are 2 TCNQs per cell of Cu-MOF-74 (1 TCNQ per 6 copper 
ions) and 4 TCNQs per cell of Mn-MOF-74 (2 TCNQ per 6 manganese 
ions). Importantly, there is no evidence of metal-containing TCNQ 
nanowires in the SEM data; these may form when TCNQ and M(II) 
are being reduced to TCNQ- and M(I) by oxidation.16 

Figure 1. (a) PXRD of M-MOF-74 and TCNQ@M-MOF for M = Cu, Mn 
and SEM of (b) Cu-MOF-74, (c) Mn-MOF-74, (d) TCNQ@Cu-MOF-74, 
and (e) TCNQ@Mn-MOF-74.

To track the coordination of TCNQ to the OMS, Raman spectra 
were collected for TCNQ@M-MOF-74 (M=Cu, Mn). The frequencies 
of C=C and C≡N stretching modes of the TCNQ change depending on 
the degree of charge transfer in both MOF analogues. The 114 cm-1 
mode shift of the C-CN wing stretch of TCNQ from 1462 to 1348 cm-

1 indicate that TCNQ interacts with the OMS on the Cu2+ ions in Cu-
MOF-74 (Figure 2a). The same shift occurs when TCNQ interacts with 
the OMS on the Mn2+ ions in Mn-MOF-74 (Figure 2b). A red shift of 
19 cm–1 for the C=C wing stretching mode suggests a partial charge 
transfer of ~0.3 e– between the framework and TCNQ.31 The C≡N 
stretch at 2230 cm-1 indicates coordination of the TCNQ molecule to 
the metal ion for Cu-MOF-74 and Mn-MOF-74 (Figures 2a and 2b). 

The C≡N stretch of TCNQ is also substantially broadened by 
adsorption for both analogues. Strikingly, the aforementioned 
signals are absent from Mg-MOF-74 and Zn-MOF-74 (Figures S4a and 
S4b), indicating the absence of TCNQ coordination. 

With the TCNQ@M-MOF-74 (M = Cu, Mn) in hand, we performed 
UV-vis absorption and diffuse reflectance spectroscopies to evaluate 
intermolecular charge transfer. After TCNQ infiltration of Cu-MOF-74 
and Mn-MOF-74, there is no band corresponding to the oxidation 
product of TCNQ2−, dicyano-p-toluoyl cyanide, at 480 nm, as 
expected by eliminating oxygen during infiltration of the M-MOF-74 
samples with TCNQ in the glovebox. Importantly, unlike the un-
infiltrated MOF-74 samples, new lower energy absorption peaks 
appear at 660 and 800 nm (green, Figure 2c) and 850 nm (purple, 
Figure 2d), respectively. The strong 660 nm peak of TCNQ@Cu-MOF-
74 is attributed to TCNQ2- formed by disproportionation of TCNQ- 
dimer, suggesting a salt of [TCNQ]2-[Cu-MOF-74]2+ formed.1 The 
weaker absorption band at 800 nm for TCNQ@Cu-MOF-74 originates 
from the TCNQ- monomer.27 The 850 nm peak in TCNQ@Mn-MOF-
74 represents donor-acceptor charge transfer between the Mn-
MOF-74 and confined TCNQ guests.12 We also observe the optical 
band gaps decrease from 3.08 eV to 1.88 eV and from 2.48 eV to 1.46 
eV, consistent with the formation of more conducting TCNQ@Cu-
MOF-74 and TCNQ@Mn-MOF-74, respectively. These band gaps are 
comparable to those previously reported for TCNQ@Co-MOF-74 (1.5 
eV)1 and TNCQ@Cu3(btc)2 (1.76 eV).15

Figure 2. Raman spectra of (a) Cu-MOF-74 and (b) Mn-MOF-74 
before and after TCNQ infiltration. (c) Transmission UV-Vis 
absorbance spectra of Cu-MOF-74 and (d) diffuse reflectance spectra 
of Mn-MOF-74 before and after TCNQ infiltration. 

To determine the electronic conductivity, electrical transport 
measurements were performed on MOF pellets using a two-point 
probe geometry with large area electrodes to decrease the contact 
resistance. We used temperature-dependent measurements to 
extract the activation energy for electronic transport. Conductivity 
data gathered for all MOF pellets were at temperatures well below 
the MOF-74 thermal decomposition of 593 K.1 We observe no 
detectable conductivity for TCNQ@M-MOF-74 (M = Mg, Zn) (Figure 
S5) as a function of increasing temperature, which is consistent with 
the lack of TCNQ coordination in these two variants. In contrast, as 
we increased the temperature from 294 K to 353 K for TCNQ@Cu-
MOF-74 and TCNQ@Mn-MOF-74, their conductivity increased up to 
5.40 × 10-2 S⋅m-1 and 5.02 × 10-3 S⋅m-1 with activation energies of 
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889.9 meV and 580.7 meV, respectively (Figure 3). These values 
are similar to those previously reported for TCNQ@Co-MOF-74.1 
Notably, the nonlinear activation energy of TCNQ@Cu-MOF-74 is 
attributed to the electron-electron Coulombic interactions of copper 
which varies by temperature. This interaction reduces the density of 
states near the Fermi level at lower temperatures (T<323 K in Figure 
3c), thus increasing activation energy.35 At T>323 K, lattice vibrations 
intensify, weakening electron binding in the outer layer of the atomic 
nucleus. Electrons likely move away from the nucleus, thus 
decreasing activation energy. 36

Figure 3. IV curves for (a) TCNQ@Cu-MOF-74 and (b) TCNQ@Mn-
MOF-74, along with corresponding Arrhenius plots for (c) 
TCNQ@Cu-MOF-74 and (d) TCNQ@Mn-MOF-74.

To develop a deeper understanding of how TCNQ increases the 
electronic conductivity of Cu-MOF-74 and Mn-MOF-74, we 
performed DFT calculations. As illustrated in Figure 4a, the 
calculations indicate that TCNQ covalently binds to the OMS of the 
MOFs and that TCNQ molecules may form a new continuous network 
through the unit cell. Our calculations further show that the LUMO 
of TCNQ appears near the valence band of the MOFs (Figure 4b). For 
TCNQ@Cu-MOF-74, the LUMO of TCNQ slightly overlaps with the 
valence band of the MOF, as indicated by the blue/green shaded 
regions in Figure 4b.  The resulting greater degree of overlap is 
consistent with the larger conductivity observed for the Cu variant 
compared to the Mn analogue (Figure 4c). Electron transfer from the 
MOFs to TCNQ is also predicted by Bader charge analysis (Table S2), 
suggesting that TCNQ p-dopes the MOFs in both analogues. 

To further probe the effects of guest molecule on the formation 
of molecular pathways, we infiltrated the Cu and Mn versions of M-
MOF-74 with the fully hydrogenated analogue of TCNQ, 
(cyclohexane-1,4-diylidene)dimalononitrile (H4TCNQ). Elemental 
analysis indicates that the loading of H4TCNQ is similar to that of 
TCNQ (i.e. 2 H4TCNQ molecules per Cu-MOF-74 cell and 4 TCNQ 
molecules per Mn-MOF-74 cell). Although Raman suggests H4TCNQ 
coordination to the OMS with a C-CN wing stretch shift and C≡N 
stretch broadening (Figures S4c and S4d), we observed that 
H4TCNQ@M-MOF-74 (M = Cu, Mn) exhibit no detectable 
conductivity (Figures S6a and S6b). The same applies to the 
magnesium and zinc variants (Figures S6c and S6d). The crystals 
remained insulating, since the H4TCNQ lacks a conjugated π electron 
network. Therefore, the presence of conjugation in the guest 

molecule is critical in completing the molecular network 
necessary for inducing conductivity in TCNQ@M-MOF-74, as was 
observed for TCNQ@Cu3(BTC)2.15         

Figure 4. (a) Possible configuration predicted by DFT calculations of 
how TCNQ may provide continuous molecular networks through the 
M-MOF-74 unit cell. On the right, only the TCNQ and metal atoms 
are shown to illustrate the new channels in the z- (top) and xy-
directions (bottom). In the HSE06 total and partial density of states  
for (b) TCNQ@Cu-MOF-74 and (c) TCNQ@Mn-MOF-74, the blue 
curve is the sum of states on the TCNQ molecule, and green/magenta 
curves are the Cu/Mn states, respectively.

In summary, we employed an air-free approach to infiltrate a 
series of isostructural M-MOF-74 (M = Cu, Mn, Zn, Mg) with TCNQ. 
This strategy produced no oxidized TCNQ2- by-product, unlike 
ambient infiltration strategy performed in previous studies. 
Infiltration of TCNQ into open d shell variants Cu-MOF-74 and Mn-
MOF-74 yielded electrically conductive materials. Interestingly, the 
introduction of H4TCNQ to the copper and manganese M-MOF-74 did 
not improve the conductivity, indicating the need for a conjugated π-
network in the guest molecules to facilitate proper band alignment 
and thus charge transport. To our knowledge, this is the first work 
with computational evidence proposing an important structure-
property relationship—binding of TCNQ to the OMS forms new 
molecular pathways and p-dopes the MOF-74 framework. Since most 
current conductive materials have limited chemical tunability, this 
work is an important step towards understanding how alternative 
charge transport pathways may help access conductive behavior in 
insulating inorganic parent materials. To guide future experimental 
efforts, computational analysis can determine what modifications 
make certain MOFs hold more metallic properties29,30,32 or predict 
which MOFs will have lower bandgaps.33 By fundamentally 
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understanding host-guest interactions, we can unlock the 
potential to transforming insulating materials into novel nanoporous 
conductive MOFs for electronic devices.4,5,15,37–38 
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