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ABSTRACT: Allosteric regulation is common in protein-protein interactions and is thus 

promising in drug design. Previous experimental and simulation work supported the presence 

of allosteric regulation in the SARS-CoV-2 spike protein. Here the route of allosteric 

regulation in SARS-CoV-2 spike protein is examined by all-atom explicit solvent molecular 

dynamics simulations, contrastive machine learning, and the Ohm approach. It was found that 

peptide binding to the polybasic cleavage sites, especially the one at the first subunit of the 

trimeric spike protein, activates the fluctuation of the spike protein’s backbone, which 

eventually propagates to the receptor-binding domain on the third subunit that binds to ACE2. 

Remarkably, the allosteric regulation routes starting from the polybasic cleavage sites share a 

high fraction (39% - 67%) of the critical amino acids with the routes starting from the nitrogen-

terminal domains, suggesting the presence of an allosteric regulation network in the spike 

protein. Our study paves the way for the rational design of allosteric antibody inhibitors.  

1. Introduction

Allosteric regulation refers to the mechanism that an event (e.g., ligand binding) at one place of a 

protein leads to influences on a remote domain of the protein, such as the local mobility of the distal domain 

and interactions with another protein. 1-6 In addition to the design of drugs that directly bind the active sites 

of proteins, allosteric regulation provides a new route for drug design. 7-9 Nevertheless, our current 

understanding of allosteric regulation is remarkably limited and its molecular mechanism remains mostly 

unrevealed due to the complicated folded structures of proteins. 10 It thus limits the progress of allosteric 

regulation-based drug design. 
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Coronavirus disease 2019 (COVID-19), due to infection of the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), has caused a global pandemic for three years, leading to over 6.9 million 

deaths and about 0.77 billion confirmed cases worldwide according to the report of the World Health 

Organization  (https://covid19.who.int/). SARS-CoV-2 virus attacks human cells via the binding of its spike 

protein with the angiotensin-converting enzyme 2 (ACE2) receptor, which is highly expressed on the 

surface of type II cells. 11-13 The coronavirus spike protein, typically known as the spike protein, is a trimeric 

glycoprotein. It appears on the virus surface as outward-facing 23 nm molecular “spikes” 14 and thus plays 

a key role in binding receptors. 15 A spike protein is composed of three subunits, each composed of around 

1270 amino acids. 16 Therefore, each trimeric spike protein has around 3800 amino acids, where there exists 

a huge amount of protein-protein interactions, standing for a highly complicated example of folded proteins.  

The allosteric regulation of SARS-CoV-2 spike protein has been reported experimentally 17-21 and in 

computer simulations. 22 Specifically, Chi, et al. 17 found that antibody 4A8, which was isolated from 

recovered patients, binds to the nitrogen-terminal domains (NTDs) of the spike protein. These NTDs are 

around 4 - 8 nm away from the binding interface between the spike’s receptor-binding domain (RBD) and 

human cell receptor ACE2. Another antibody CR3022, also isolated from a recovered patient, was found 

to target a highly conserved epitope of SARS-CoV-2 (and SARS-CoV in 2013), which is distal from the 

spike RBD. 18 And antibody 47D11 was reported to bind to a non-RBD epitope of the SARS-CoV-2 (and 

SARS-CoV) spike protein. 19 Very recently, Tulsian, et al. 20 presented extensive studies on the allosteric 

regulation in the SARS-CoV-2 spike protein upon the binding of nine antibodies (four from their work and 

five existing ones, including 4A8 and CR3022). Same as 4A8, antibody LSI-CoVA-017 was found to bind 

to the spike NTD. Impressively, upon the LSI-CoVA-017 binding to NTD, the S1/S2 cleavage site and 

other distal domains of the spike protein displayed notable changes in the conformational dynamics using 

the hydrogen-deuterium exchange mass spectrometry (HDX-MS). Conformational changes were also 

observed in distal sites of NTD and the S2 subunits of the spike protein when the other antibodies were 

bound to the spike RBD. The allosteric regulation between the S1/S2 cleavage site and RBD was also 

predicted by Qiao and Olvera de la Cruz 22 using all-atom explicit solvent molecular dynamics (MD) 

simulations and reported by Chen, et al. 21 using HDX-MS. Note that the influences of glucans on allosteric 

regulation in the SARS-CoV-2 spike protein were also examined 20 as well as the possible allosteric 

regulation in ACE2. 23, 24 Taken together, these experimental observations and in silico prediction support 

that the allosteric regulation in the SARS-CoV-2 spike protein could reach up to a distance of around 4 - 8 

nm between NTD and RBD, 17, 20 around 10 nm between the S1/S2 cleavage site and RBD, 20-22 or more 

than 10 nm between the S2 subunit and RBD. 20
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Even though the allosteric regulation in the spike protein has been reported, the mechanism remains elusive. 

Specifically, the pathway of signal transmission from the allosteric sites (NTD, the S1/S2 cleavage site) to 

the active site (RBD) is unknown, which is nevertheless required for the rational design of allosteric 

neutralizing ligands for the SARS-CoV-2 spike protein. Inspired by the recent findings on the allosteric 

regulation between the S1/S2 cleavage site and RBD 20-22 and between NTD and RBD, 17, 20 here we 

examined the routes for the allosteric regulation in the SARS-CoV-2 spike protein. All-atom explicit solvent 

MD simulations were carried out along with the contrastive learning 25 and Ohm 26 approaches. These 

methods collectively reveal the route of the allosteric regulation in the spike protein, which will be 

beneficial for our understanding of the mechanism of allosteric regulations as well as allosteric inhibitor 

design.

2. Methods

2.1 All-atom explicit solvent MD simulations. All-atom MD simulations were carried out for the spike-

ACE2 complex. Each subunit of the spike trimer was composed of 1273 amino acids (M1 – T1273) along 

with 597 amino acids (S19 – D615) for ACE2. Three parallel simulations were performed on the spike – 

ACE2 complex with one tetrapeptide EELE (Glu-Glu-Leu-Glu) which was bound to the polybasic cleavage 

site (R682RAR685, PCS) on the subunit A (PCS-A). PCS is a part of the S1/S2 cleavage site (residues 672-

695 20). The initial structure is provided in ESI Fig. S1. Note that although all three subunits of the spike 

trimer have the same amino acid sequence, they are structurally different in the “Up” conformation when 

ACE2 binds to the RBD on the subunit C (RBD-C). We examined the structural change of the spike protein 

that could be activated by the electrostatic binding between the negatively charged tetrapeptide EELE and 

the positively charged PCS motif.

These simulations were performed using the package GROMACS (version 2019.6) 27 at the Texas 

Advanced Computing Center. Like in our previous work, 22 the CHARMM 36m potential 28 was used, along 

with the recommended CHARMM TIP3P water model 29 with the water structures constrained using the 

SETTLE algorithm. 30

The spike-ACE2 complex structure was downloaded from the Zhang-Server. 15 The subunit C of the spike 

protein was in the “Up” conformation and binding to ACE2. The spike-ACE2 complex was solvated in a 

water box with a size of 16 nm×18 nm×24 nm. A salt concentration of 0.15 M was applied. The system had 

692,370 atoms in total.

The energy minimization of the whole system was first conducted using the steepest descent algorithm to 

remove possible close contact between different molecules. Subsequent equilibrations were conducted for 

one simulation of 1 ps using the canonical ensemble (constant number of particles, volume, and temperature, 
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NVT) and another simulation of 1 ps using the isothermal-isobaric ensemble (constant number of particles, 

pressure, and temperature, NPT). The velocity-rescale temperature coupling and the Berendsen pressure 

coupling were applied. Afterward, the solvated system was equilibrated for another 10 ns under the NPT 

ensemble with the Nosé-Hoover temperature coupling at 298 K and the Parrinello-Rahman barostat at 1.0 

bar. 31 The integration time step of 2 fs was used with all the hydrogen-involved covalent bonds constrained 

using the LINCS algorithm. 32, 33 In the equilibration simulations above, the coordinates of the non-hydrogen 

atoms of the spike protein trimer, ACE2, and the tetrapeptides were restrained using a force constant of 

1000 kJ/mol/nm2 to preserve the binding structure. The restraints were then removed in the production 

simulations. The other parameters were the same as those in the production simulation. Each production 

simulation was carried out for a duration of 100 ns using the NPT ensemble. The simulation trajectory was 

saved at a frequency of 10 frames per 1 ns. A total of 1,000 snapshots were thus extracted for each system 

to collect the contact map of the spike protein Cα atoms. 

The contact map between all the Cα atoms of the spike protein from each extracted snapshot was calculated 

using gmx distance, a utility program of GROMACS. The evolution trajectory of the spike protein was 

represented by a sequence of contact maps. A contact map C was a two-dimensional matrix whose element, 

 was the spatial Euclidean distance between the Cα atoms of the ith and jth amino acids of the spike 𝐶(𝑖,𝑗),

protein at a particular moment. 

It is noteworthy that additional simulations were performed which had three tetrapeptides EELE, each 

binding to one of the three PCSs on the spike trimer. These simulations suggested the relatively stronger 

binding affinity between PCS-A and the peptide EELE neighbor. Specifically, only the binding between 

PCS-A and the associated peptide EELE was stable for the whole simulation duration of 100 ns. In contrast, 

the peptides bound to PCS-B and PCS-C became dissociated at less than 100 ns: the peptide EELE bound 

to PCS-B became dissociated at around 10 ns in the first parallel simulation and was stable for 100 ns in 

the second simulation; the peptide bound to PCS-C became dissociated at around 40 ns and 30 ns in the 

two parallel simulations. This is qualitatively consistent with our previous observations. 22 The observed 

dissociation of peptides bound to PCS-B and PCS-C also rationalized the simulation duration of 100 ns for 

protein-peptide interactions here, though it is likely too short for protein-protein interactions of specifically 

the large-sized spike protein. Moreover, calculations of the RBD-ACE2 binding affinity in the presence of 

varying number of neutralizing peptide EELE also supported the dominant role of PCS-A in destabilizing 

the distal RBD-ACE2 binding (ESI Table S1). Therefore, in what follows only the simulations with one 

peptide EELE bound to PCS-A were further analyzed.

2.2 Contact map feature extraction using contrastive learning
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Machine learning (ML) has proven its efficacy in comprehending protein structures, even when dealing 

with unlabeled data. The MD simulation trajectories of protein structures typically lack labels, necessitating 

an unsupervised approach for interpretation. To address this, data feature extractors, such as autoencoders 

combined with clustering algorithms, have been employed to identify phases of protein structure changes 

or fluctuations. 34, 35 Self-supervised learning stands as another ML category that can yield robust feature 

representations from unlabeled data for subsequent tasks. 36 Backbone models responsible for generating 

data feature representations are trained through solving "pretext" tasks, encompassing activities like 

predicting rotations, 37 learning inpainting, 38 solving jigsaw puzzles, 39 and image coloring. 40 However, 

these hand-crafted pretext tasks often rely on ad-hoc heuristics, limiting the generality of the data 

representations. 

Contrastive learning 25 represents a state-of-the-art self-supervised learning algorithm. It is dataset-agnostic 

and has demonstrated its efficacy across a broad spectrum of applications, including the study of protein 

structures. 41, 42 As shown in Fig. 1, the contrastive learning algorithm learns the feature representations of 

contact maps by maximizing the agreement between a positive pair  via a loss function, in which  (𝑥𝑖,𝑥𝑗) 𝑥𝑖

and  are correlated views of the same contact map , generated by stochastic data augmentations t ~ Τ 𝑥𝑗 𝑥

and t' ~ Τ, respectively. The loss function between a positive pair is defined in Εq. (1).

 ,            (1)𝑙𝑖,𝑗 = ―𝑙𝑜𝑔
exp (𝑠𝑖𝑚(𝑦𝑖, 𝑦𝑗)

𝜏 )
∑2𝑁

𝑘 = 1𝟙[𝑘 ≠ 𝑖]exp (𝑠𝑖𝑚(𝑦𝑖, 𝑦𝑘)
𝜏 )

in which  is an indicator function,  is cosine similarity of contact maps 𝟙[𝑘 ≠ 𝑖] ∈ {0,1} 𝑠𝑖𝑚(𝑢,𝑣) =
𝑢𝑇𝑣

‖𝑢‖‖𝑣‖

.  is a temperature parameter, which is empirically determined. In Fig. 1,  is the backbone (𝑢,𝑣) 𝜏 𝑓(·)

representation encoder. Resnet50 is used for this purpose.  is a projection head, which in this work is a 𝑔(·)

multilayer perceptron with one hidden layer. Both  and  are trained to maximize the agreement 𝑓(·) 𝑔(·)

between the positive pairs of augmented views of contact maps using the loss function. The dimension of 

the extracted contact map representation is a 2048  1 vector in our work. The augmentation candidate set 

T are the following that are sequentially and randomly (with a probability of 0.5) applied: random cropping 

followed by resizing back to the original size, Sobel filtering, random horizontal flipping, and Gaussian 

blurring. After the contrastive learning model is trained, the projection head is thrown away. The output of 

the backbone representation encoder is the feature representation of the corresponding contact map. The 

feature representation vectors of contact maps obtained by the all-atom MD simulations are then grouped 

via the k-means clustering algorithm to reveal the evolution stages of SARS-CoV-2 spike protein structures 

in the process of binding to the human cell receptor ACE2.
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Fig. 1. The framework of contrastive learning contact map feature extraction and protein structure 

transition stage detection.  are considered a positive pair when they represent correlated views of (𝑥𝑖,𝑥𝑗)

the same contact map , produced through stochastic data augmentations t ~ Τ and t' ~ Τ, respectively. The 𝑥

augmentation sequence T, employed in this study, is executed sequentially and applied randomly with a 0.5 

probability, encompassing random cropping followed by resizing back to the original dimensions, Sobel 

filtering, random horizontal flipping, and Gaussian blurring. The backbone representation encoder, denoted 

as , specifically employs Resnet50. , a compact projection head, is designed as a multilayer 𝑓(·) 𝑔(·)

perceptron (MLP) featuring a single hidden layer. Both  and  are trained with the primary objective 𝑓(·) 𝑔(·)

of maximizing agreement among positive pairs of augmented contact map views using the loss function 

outlined in Eq. (1). The feature extractor, obtained via contrastive learning, processes the contact maps. 

Subsequently, the k-means clustering algorithm is used to group the series of contact maps into stages 

representing structural transitions.

2.3 Ohm for allosteric regulation pathway

Based on the contact matrix of proteins, Wang, et al. very recently proposed the Ohm method. 26 In the 

Ohm method, a perturbation propagation algorithm was developed, which was a repeated stochastic process 

of perturbation propagation on a network of interacting amino acids in a protein. Therefore, Ohm specializes 

in characterizing the allosteric regulation of proteins by examining the propagation of protein structure 

perturbation. To predict the allosteric regulation pathway, Ohm relies exclusively on the protein structure, 

making it computationally efficient. Ohm was found to be able to successfully map allosteric networks for 

a database of 20 proteins for which the allosteric sites were experimentally known. Wang, et al. further 
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developed an automated web server (https://dokhlab.med.psu.edu/ohm/) for mapping, visualizing, and 

characterizing allosteric communication networks.

Here, the Ohm server was employed. By specifying the start of the allosteric pathway (PCS and RBD, see 

ESI Table S2) and the end which is the RBD on the subunit C (residues L455 - Y505), Ohm reports all the 

critical amino acids on the allosteric route. 

Note that antibody 4A8 primarily binds to two motifs of NTD3 and NTD5 of the spike protein. 17 After 

examining the amino acids on the NTD3 and NTD5 epitopes, we found that the NTD3 epitope 

(L141GVYYHK147NNK150SWMESE156) is similar to PCS. Specifically, the central fragment K147NNK150 is 

positively charged and exposed, akin to PCS. It might be promising to design NTD3-targeting, negatively 

charged neutralizing peptides that could destabilize the spike-ACE2 binding given the fact that the spike 

protein and ACE2 are both negatively charged. 22 Therefore, in the present work we are focusing on the 

NTD3 motif when identifying the allosteric regulation routes from NTD to the RBD on the subunit C.  

3. Results and discussion

We first carried out all-atom explicit solvent MD simulations on the spike-ACE2 complex. One tetrapeptide 

EELE was initially associated with the PCS on the subunit A of the spike trimer. Note that the subunit C 

was in the “Up” conformation and formed direct binding with ACE2. Illustrated in Fig. 2 is the final 

structure of one simulation. The parallel simulations supported the stable binding between PCS-A and the 

EELE peptide. 

We hypothesize that the strong electrostatic attractions between the positively charged PCS motif 

(R682RAR685) and the negatively charged EELE tetrapeptides trigger a local structural fluctuation that might 

eventually lead to a global conformational adaptation of the spike protein. In this work, we are primarily 

examining the route from the tetrapeptide EELE-triggered local structural fluctuation to the distal influence 

in destabilizing the RBD-ACE2 binding. 
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Fig. 2. Molecular structure of the spike-ACE2 complex in the presence of the neutralizing 

tetrapeptides EELE. (a) Front view and (b) back view. The three subunits of the trimeric spike protein are 

colored in ice blue/cyan/orange for the subunits A/B/C, respectively. The spike protein’s PCS, NTD, and 

RBD are colored in blue, dark blue, and orange, respectively. The ACE2 receptor and the tetrapeptide EELE 

are colored in silver and red, respectively. 

3.1 Stages of the spike protein structure transition obtained via contrastive learning and clustering

Each atomistic simulation ran 100 ns, where 1,000 frames were saved at the frequency of 0.1 ns per frame. 

The contact map of the spike protein Cα atoms was consequently generated as a function of the simulation 

time. See the Methods section for the details. Contrastive ML and clustering were subsequently performed 

for the obtained contact maps, and the characteristic structures and stages were determined accordingly. 

Fig. 3 shows the results of the contrastive ML analysis of one of the three parallel MD trajectories of spike 

protein structure transition in the process of protein-ACE2 binding. The corresponding contrastive ML 

analyses for the other two parallel MD trajectories are provided in ESI Fig. S2. A sequence of 1,000 contact 

maps of the spike protein was generated based on the atomistic MD trajectory. Feature vectors of the contact 

maps are extracted by the backbone feature extractor of the contrastive learning model, which is a deep 

resnet50 model 43 in this work. The contrastive learning model is trained by maximizing the agreement of 

positive pairs (augmented views of the same contact maps). The details of contrastive learning are discussed 

in the Methods section. After the contrastive model is trained, the feature extractor is utilized to generate 

feature vectors of the contact maps. A feature vector in this work is a 2048  1 vector. These contact map 

feature vectors are then grouped using the k-means algorithm to find the stages of the protein structure 
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transition. To find the optimal number of clusters k, cluster numbers ranging from 1 to 15 were tried, and 

the elbow method and the average silhouette scores method were utilized (Fig. 3a, b) to determine the 

optimal number of clusters. Both the elbow and silhouette score methods indicate an optimal number of 

clusters of k = 10. The contact map that is the closest to the centroid of a cluster is used as the representative 

of the state. As shown in Fig. 3c, these contact map IDs are 26, 91, 222, 351, 467, 567, 644, 729, 860, and 

954 (occurred at 2.6 ns, 9.1 ns, 22.2 ns, 35.1 ns, 46.7 ns, 56.7 ns, 64.4 ns, 72.9 ns, 86.0 ns, and 95.4 ns, 

respectively). 

Fig. 3.  SARS-CoV-2 spike protein structure transition analysis using contrastive learning and k-

means clustering. (a) Elbow method using inertia. (b) The average silhouette score with different numbers 

of clusters. Both criteria indicate that 𝑘 = 10 is the optimal number of clusters. (c) Ten clustered stages of 

spike protein structure transition in the process of the spike-ACE2 binding, in chronological order. The red 

dots are the corresponding positions of the contact map that are closest to the centroid of each cluster. 

3.2 Structural fluctuations in the spike structure in the stages from contrastive ML  

As provided in the contrastive ML learning and clustering (Fig. 3c), a total of 10 stages were identified in 

the spike-ACE2 complex in the presence of the tetrapeptides EELE. Accordingly, we calculated the root-

mean-square fluctuation (RMSF) of the spike protein Cα atoms for all the ten stages. The calculated RMSFs 

are presented in Fig. 4.

As demonstrated in Fig. 4a, PCS-A displays the strongest structural fluctuation in the first stage which is 

ascribed to the tetrapeptide EELE binding, which became gradually weakened over the simulation time. 

The RBD on the subunit C, which directly binds ACE2, displayed elevated structural fluctuation from stage 

2 till the end of the simulation (Fig. 4c). In contrast with the remarkable structural fluctuation of PCS-A, it 

is much weaker for the PCSs (R682RAR685) on the subunits B and C (Fig. 4b, c), indicating their negligible 

impacts. 
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Fig. 4. Structural fluctuations of the spike protein in the presence of a tetrapeptide EELE obtained 

from the atomistic MD simulation. (a) Subunit A, (b) subunit B, and (c) subunit C. The Cα RMSFs were 

calculated for the 10 stages derived from the contrastive ML. The RMSFs are shifted by (n-1)*0.5 nm for 

the display, where n = 1 - 10 stands for the corresponding stage ID provided on the right of panel (c).

 

The residues close to the N-terminal (residue numbers less than 300) display relatively larger fluctuations 

for all three subunits. This motif is actually the N-terminal domain (NTD), which is known to bind 

antibodies 4A8 17 and LSI-CoVA-017. 20 The calculated RMSFs thus support the intrinsically flexible 

feature of NTD, which is desired for structural fluctuation and propagation. The relatively large fluctuations 

on the C-terminal residues (residues 1000 - 1273), which are located on the S2 subunits, are ascribed to the 

partially unstructured features and are thus ignored here.

3.3 Pathway of the allosteric regulation from PCS to RBD, and from NTD to RBD

As illustrated in Fig. 4, the contrastive ML supports the correlated structural fluctuation between PCS-A 

and RBD on the subunit C. However, the detailed route is still missing. In this regard, the Ohm approach 26 

is employed to predict the allosteric regulation pathway. 

We examined the allosteric regulation route from all three PCSs to the RBD on the subunit C. As illustrated 

in Fig. 5, the backbone atoms of the critical residues are highlighted to direct the pathway. Impressively, 
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the allosteric regulation route is found to propagate across different subunits. For instance, the route starting 

with PCS-A propagates starting from subunit A to subunit C, to subunit B, and eventually to subunit C (Fig. 

5a), indicating the nonlinear nature of allosteric regulation.

Moreover, the protein backbone-labeled route is shown to be discontinuous at a couple of sites. See also 

the ESI Movies. It supports that in addition to the backbone atoms, the side chains of the critical residues 

are also involved in the structural propagation, which is absent in the contrastive ML (Fig. 3) and the RMSF 

calculations (Fig. 4). That said, for a complete understanding of the allosteric regulation route, different 

approaches are collectively desired.

Owing to the long distance of approximately 10 nm from the PCSs to the RBD, there exist 27 amino acids 

on the allosteric regulation routes from PCS-A to RBD, and 23 amino acids from the other two PCSs to 

RBD. 

Fig. 5. Pathway of the allosteric regulation in the spike protein obtained via Ohm from (a) PCS-A, 

(b) PCS-B, and (c) PCS-C, to the RBD on subunit C. The three subunits of the trimeric spike protein are 

colored in ice blue/cyan/orange for the subunits A/B/C, respectively. PCSs are colored in blue and the RBD 

on subunit C in orange, which is in direct contact with ACE2 (in silver). The backbone atoms on the 

connecting amino acids are indicated by magenta; the names of the connecting amino acids are provided in 

the illustration. The corresponding rotation movies are provided as ESI Movie S1. 

Given the significant role of NTD observed in the experiments 17, 20 and our RMSF calculations (Fig. 4), 

we also examined the route of the allosteric regulation from NTD to RBD (Fig. 6). Even though NTD-A is 
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physically closer (~ 9.1 nm) to the RBD-ACE2 binding interface than PCS-A to the interface (~ 10.6 nm), 

there exist more critical residues than that for PCS-A (33 vs. 27), indicating the indirect feature of allosteric 

regulation. Surprisingly, the route from NTD-A to RBD shares a large number (i.e., 18) of critical residues 

with the route from PCS-A to RBD. This accounts for 54.5% (18/33) for the NTD-A – RBD route and 66.7% 

(18/27) for the PCS-A - RBD route, respectively. Similarly, the route starting with NTD-B shares 63.6% 

(14/22) critical residues with the route starting with PCS-B (14/23 = 60.9%), and the route from NTD-C 

shares 39.1% (9/23) critical residues with the one from PCS-A (9/23 = 39.1%). It thus indicates that the 

routes from the PCSs and the NTDs are likely correlated, that is, the presence of an allosteric regulation 

network in the spike protein (ESI Movie S3).
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Fig. 6. Pathway of the allosteric regulation in the spike protein obtained via Ohm from (a) NTD-A, 

(b) NTD-B, and (c) NTD-C, to the RBD on subunit C. NTDs are colored in dark blue. The other color 

codes are the same as those in Fig. 5. The corresponding rotation movies are provided as ESI Movie S2.

4. Conclusions

We demonstrate the route of allosteric effects in the spike protein of SARS-CoV-2. The EELE tetrapeptides 

prefer binding to the polybasic cleavage site on the first subunit of the trimeric spike protein. The fluctuation 

of the spike protein was activated upon the binding of the EELE tetrapeptide. The structural fluctuation is 

found to propagate across different subunits, and amino acid side chains are also contributing to the 

propagation. Impressively, we found that the routes from the PCSs to RBD share a large number of the 

critical amino acids, ranging from 39% up to 67%, with the corresponding routes from the NTDs to RBD. 
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It thus suggests the presence of an allosteric regulation network in the SARS-CoV-2 spike protein and likely 

in other proteins.

In summary, by coupling contrastive learning-based contact map feature extraction, all-atom explicit 

solvent MD simulations, and Ohm, we have revealed the route of allosteric regulation in the spike protein 

of SARS-CoV-2. Impressively, the NTDs are found to share the majority of route of allosteric regulations 

with the PCSs. This work thus sheds insights into the fundamental understanding of allosteric regulations 

in protein-protein interactions as well as into the rational design of allosteric drugs.
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