Themed collection Status of Photoelectrochemical Water Splitting: Past, Present, and Future

6 items
Editorial

Photoelectrochemical water splitting

The authors in this collection offer comprehensive and definitive summaries of important topics in photoelectrochemical hydrogen production.

Graphical abstract: Photoelectrochemical water splitting
Open Access Opinion

Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation

We outline the significance and advantages of different metrics used to characterize photoelectrodes for electrochemical solar energy conversion.

Graphical abstract: Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation
Review Article

Interfacial band-edge energetics for solar fuels production

Theoretical and practical aspects of solid–solid and solid–liquid interfaces for photoelectrochemical (PEC) devices are discussed.

Graphical abstract: Interfacial band-edge energetics for solar fuels production
Review Article

Particle suspension reactors and materials for solar-driven water splitting

Reactor and particle design considerations of particle suspension reactors for solar photoelectrochemical water splitting.

Graphical abstract: Particle suspension reactors and materials for solar-driven water splitting
Review Article

Methods of photoelectrode characterization with high spatial and temporal resolution

This article reviews computational and in situ experimental tools capable of characterizing the properties and performance of photoelectrodes used for solar fuels production with high spatial and temporal resolution.

Graphical abstract: Methods of photoelectrode characterization with high spatial and temporal resolution
Review Article

Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting

Laboratory demonstrations of spontaneous photoelectrochemical solar water splitting cells are reviewed. Reported solar-to-hydrogen conversion efficiencies are as high as 18%. Reported operational lifetimes are relatively short, with few demonstrations exceeding one week.

Graphical abstract: Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
6 items

About this collection

Photoelectrochemical water splitting represents a promising path toward renewable and economical hydrogen generation using sunlight and water as the only inputs. The aim of this themed collection is to inform those in the photoelectrochemistry field of notable research findings, and to discuss the opportunities and key barriers to achieving this goal.

The collection consists of five articles written by experts in the field, describing the current state-of-the-art demonstrations in solar water splitting, approaches to band-structure engineering of semiconductor materials for optimized performance, characterization on small length scales and fast time scales, and efficiency definitions.

Spotlight

Advertisements