Issue 17, 2015

The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells

Abstract

Mesoporous graphite/carbon black counter electrodes (CEs) using flaky graphite with different sizes were applied in hole-conductor-free mesoscopic perovskite solar cells by a screen-printing technique. Conductivity measurements, current–voltage characteristics, and impedance spectroscopy measurements were carried out to study the influence of CEs on the photovoltaic performance of devices. The results indicated that graphite, which acted as the conductor in carbon counter electrodes (CCEs), could significantly affect the square resistance of CCEs, thus resulting in differences in fill factor and power conversion efficiency (PCE) of the devices. Based on the optimized CCEs with a thickness of 9 μm, PCEs exceeding 11% could be achieved for the fully printable hole-conductor-free mesoscopic perovskite solar cells due to the low square resistance and large pore size of graphite based CCEs. The abundant availability, low cost and excellent properties of such carbon material based CEs offer a wide prospect for their further applications in perovskite solar cells.

Graphical abstract: The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells

Article information

Article type
Paper
Submitted
07 sept. 2014
Accepted
29 sept. 2014
First published
30 sept. 2014

J. Mater. Chem. A, 2015,3, 9165-9170

Author version available

The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells

L. Zhang, T. Liu, L. Liu, M. Hu, Y. Yang, A. Mei and H. Han, J. Mater. Chem. A, 2015, 3, 9165 DOI: 10.1039/C4TA04647A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements