Issue 4, 2016

Polymers and the p-block elements

Abstract

A survey of the state-of-the-art in the development of synthetic methods to incorporate p-block elements into polymers is given. The incorporation of main group elements (groups 13–16) into long chains provides access to materials with fascinating chemical and physical properties imparted by the presence of inorganic groups. Perhaps the greatest impedance to the widespread academic and commercial use of p-block element-containing macromolecules is the synthetic challenge associated with linking inorganic elements into long chains. In recent years, creative methodologies have been developed to incorporate heteroatoms into polymeric structures, with perhaps the greatest advances occurring with hybrid organic–inorganic polymers composed of boron, silicon, phosphorus and sulfur. With these developments, materials are currently being realized that possess exciting chemical, photophysical and thermal properties that are not possible for conventional organic polymers. This review focuses on highlighting the most significant recent advances whilst giving an appropriate background for the general reader. Of particular focus will be advances made over the last two decades, with emphasis on the novel synthetic methodologies employed.

Graphical abstract: Polymers and the p-block elements

Article information

Article type
Review Article
Submitted
22 sept. 2015
First published
02 nov. 2015

Chem. Soc. Rev., 2016,45, 922-953

Author version available

Polymers and the p-block elements

A. M. Priegert, B. W. Rawe, S. C. Serin and D. P. Gates, Chem. Soc. Rev., 2016, 45, 922 DOI: 10.1039/C5CS00725A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements