Issue 10, 2021

Purcell-enhanced photoluminescence of few-layer MoS2 transferred on gold nanostructure arrays with plasmonic resonance at the conduction band edge

Abstract

Plasmonic coupling of metallic nanostructures with two-dimensional molybdenum disulfide (MoS2) atomic layers is an important topic because it provides a pathway to manipulate the optoelectronic properties and to overcome the limited optical cross-section of the materials. Plasmonic enhanced light–matter interaction of a MoS2 layer is known to be mainly governed by optical field enhancement and the Purcell effect, while the discrimination of the contribution from each mechanism to the plasmonic enhancement is challenging. Here, we investigate photoluminescence (PL) enhancement from few-layer MoS2 transferred on Au nanostructure arrays with controlled localized surface plasmon resonance (LSPR) spectral positions that were detuned from the excitation wavelengths. Two distinctive regimes in LSPR mode-dependent PL enhancement were revealed showing a maximum enhancement (∼40-fold) with zero detuning and a modest enhancement (∼10-fold) with the red-shift detuned LSPR from the excitation wavelength, which were attributed to LSPR-induced optical field enhancement and the Purcell effect, respectively. By applying the experimental parameters into the Purcell effect formalism, an effective mode volume of ∼0.016λ03 was estimated. Our work provides an insight into how to utilize few-layer MoS2 as a base material for optoelectronics by harnessing Purcell-enhanced optical responsivity.

Graphical abstract: Purcell-enhanced photoluminescence of few-layer MoS2 transferred on gold nanostructure arrays with plasmonic resonance at the conduction band edge

Supplementary files

Article information

Article type
Paper
Submitted
16 nov. 2020
Accepted
29 janv. 2021
First published
09 févr. 2021

Nanoscale, 2021,13, 5316-5323

Purcell-enhanced photoluminescence of few-layer MoS2 transferred on gold nanostructure arrays with plasmonic resonance at the conduction band edge

H. Kim, S. Moon, J. Kim, S. H. Nam, D. H. Kim, J. S. Lee, K. Kim, E. S. H. Kang, K. J. Ahn, T. Kim, C. Shin and Y. D. Suh, Nanoscale, 2021, 13, 5316 DOI: 10.1039/D0NR08158B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements