Developing porous electrocatalysts to minimize overpotential for the oxygen evolution reaction

Abstract

The development of electrocatalysts for the oxygen evolution reaction (OER) is one of the most critical issues for improving the efficiency of electrochemical water-splitting, which can produce green hydrogen energy without CO2 emissions. This review outlines the advances in the precise design of inorganic- and organic-based porous electrocatalysts, which are designed by various strategies, to catalyze the OER in the electrolytic cycle for efficient water-splitting. For developing high-performance electrocatalysts with low overpotentials, it is important to design a chemical composition that optimizes binding energy for an intermediate in the OER and allows the easy access of reactants to active sites depending on the porosity of electrocatalysts. Porous structures give us the positive opportunity to increase the accessible surface of active sites and effective diffusion of targeting molecules, which is potentially one of the guidelines for developing active electrocatalysts. Further modification of the frameworks is also powerful for tailoring the function of pore surfaces and the environment of inner spaces. Designable organic molecules can also be embedded inside inorganic- and organic-based frameworks. According to chemical composition (inorganic and organic), nanostructure (crystalline and amorphous) and additional modification (metal doping and organic design) of porous electrocatalysts, the current status of resultant OER performance is surveyed with some problems that should be solved for improving the OER activity. The remarkable progress in OER electrocatalysts is also introduced for demonstrating the bifunctional hydrogen evolution reaction (HER) and for utilizing seawater.

Graphical abstract: Developing porous electrocatalysts to minimize overpotential for the oxygen evolution reaction

Article information

Article type
Feature Article
Submitted
10 oct. 2024
Accepted
03 déc. 2024
First published
03 déc. 2024

Chem. Commun., 2025, Advance Article

Developing porous electrocatalysts to minimize overpotential for the oxygen evolution reaction

T. Ami, K. Oka, H. Kasai and T. Kimura, Chem. Commun., 2025, Advance Article , DOI: 10.1039/D4CC05348F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements