Semiconductor-mediated radiosensitizers: progress, challenges and perspectives
Abstract
Radiotherapy has become one indispensable treatment strategy for treating malignant tumors. However, the therapeutic effect of radiotherapy is limited due to the low sensitivity and large side effects of existing radiosensitizers. The rapid development of nanotechnology has created opportunities for various novel kinds of radiosensitizers with excellent radiosensitivity to sprout recently. In particular, due to the ease of modification and potential utilization capacity for a multifunctional radiotherapy platform, semiconductor radiosensitizers have attracted more and more attention. Recently, many novel semiconductor based radiosensitizers have been reported, which provides new ideas for the improvement of radiotherapy efficacy. To make further breakthroughs in semiconductor radiosensitizers, a systematic review is urgently needed and is herein provided. This review first elaborates on the principle of semiconductor induced radiosensitization, and then focuses on strategies such as doping and constructing heterojunctions to enhance the radiosensitivity of semiconductors. Next, it introduces in detail the principle and progress of different types of semiconductor radiosensitizers. Finally, challenges and perspectives of semiconductor radiosensitizers are proposed and discussed, offering guidance for future commercial applications of semiconductor radiosensitizers.
- This article is part of the themed collection: Recent Review Articles