Enhanced photothermal catalytic CO2 reduction by CeO2-based multicomponent catalysts
Abstract
Photothermal catalysis is an effective strategy to achieve CO2 reduction under mild conditions. CeO2-based catalysts with strong CO2 adsorption capacity and unique electronic structures are promising candidates for this reaction. However, improving their photothermal catalytic efficiency remains a great challenge due to the wide bandgap and poor light absorption of CeO2. In this review, we summarize the previous representative literature from the perspective of photothermal synergistic catalysis and focus on the effect of multicomponent catalyst structure on CO2 conversion and product selectivity. Subsequently, we discuss the three main CO2 reduction mechanisms, including thermally assisted photocatalytic reduction, photo-driven thermal catalytic reduction and photothermal synergistic catalytic reduction. Finally, we present the challenges and future directions for CeO2-based multicomponent catalysts in photothermal catalytic CO2 reduction.
- This article is part of the themed collection: Rare Earth Materials