Issue 11, 2014

Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production

Abstract

The construction and application of visible-light-driven photocatalysts falls in the central focus for the efficient utilization of renewable solar energy, which provides unprecedented opportunities for addressing the increasing concerns on energy and environmental sustainability. Herein, graphene based Au–TiO2 photocatalysts were fabricated by a simple, one-step microwave-assisted hydrothermal method, using Degussa P25 TiO2 powder (P25), graphene oxide and HAuCl4 aqueous solution as the raw materials. The effects of graphene introduction and gold loading on the photocatalytic hydrogen production rates of the as-prepared samples in a methanolic aqueous solution were investigated. The results indicated that Au–TiO2–graphene composite had a significantly increased visible light absorption and enhanced photocatalytic H2-production activity compared to the Au–TiO2 composite. In comparison, the pure TiO2, graphene–TiO2 and graphene–Au had no appreciable visible-light-driven H2 production. The enhanced photocatalytic H2-production activity of the Au–TiO2–graphene composite is ascribed to (1) the load of the Au nanoparticles which broadens the visible light response of TiO2 due to the surface plasmon resonance (SPR) effect, and (2) the introduction of graphene, which functions as rapid electron transfer units, facilitating the space separation of photoelectron and hole pairs. The proposed H2-production activity enhancement mechanism was further confirmed by the transient photocurrent response and electrochemical impedance spectroscopy (EIS) experiments.

Graphical abstract: Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production

Article information

Article type
Paper
Submitted
26 nov. 2013
Accepted
12 déc. 2013
First published
03 févr. 2014

J. Mater. Chem. A, 2014,2, 3847-3855

Author version available

Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production

Y. Wang, J. Yu, W. Xiao and Q. Li, J. Mater. Chem. A, 2014, 2, 3847 DOI: 10.1039/C3TA14908K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements