Issue 3, 2016

3D printing of microfluidic devices for paper-assisted direct spray ionization mass spectrometry

Abstract

This study describes the use of a 3D printer to fabricate microfluidic devices for direct spray ionization mass spectrometry (DS-MS) assisted by paper tips. The layout of the proposed devices was designed in a three-dimensional model through a computer-aided design system and printed by a fused deposition modeling method using a thermoplastic filament composed of acrylonitrile butadiene styrene deposited layer by layer. The smallest channel width was 400 μm to ensure 3D printing uniformity without any obstruction. For DS-MS studies, microfluidic channels consisted of a single channel connected to a sample reservoir (3 mm diameter). The printed channel was 3 cm long, 500 μm wide and 500 μm deep. Paper tips (0.5 cm long × ca. 0.5 mm wide) were manually cut and inserted into the extremity of the printed channel to facilitate the spray formation. The spray was promoted by the application of 4 kV at the sample reservoir containing 0.1% formic acid prepared in methanol. This organic medium selected for MS experiments has demonstrated great compatibility with the polymeric material employed to create microfluidic chips. 3D printed devices were kept at a distance of 3 mm from the MS entrance. Using glucose solution as the model, the formed spray by the proposed microfluidic device was extremely stable in comparison to traditional paper spray ionization devices for at least 10 min. The analytical feasibility of printed devices for DS-MS was successfully demonstrated by qualitative analysis of ballpoint pen inks, caffeine, xylose and lysozyme. The 3D printer has allowed the fabrication of printed devices at a very low cost ($0.05) within 20 min. Furthermore, 3D printed devices have exhibited significant repeatability and reproducibility, making their reuse possible. Based on the performance of the proposed devices, we believe they can be used in a broad range of bioanalytical applications.

Graphical abstract: 3D printing of microfluidic devices for paper-assisted direct spray ionization mass spectrometry

Supplementary files

Article information

Article type
Paper
Submitted
24 nov. 2015
Accepted
25 nov. 2015
First published
02 déc. 2015

Anal. Methods, 2016,8, 496-503

3D printing of microfluidic devices for paper-assisted direct spray ionization mass spectrometry

L. C. Duarte, T. Colletes de Carvalho, E. O. Lobo-Júnior, P. V. Abdelnur, B. G. Vaz and W. K. T. Coltro, Anal. Methods, 2016, 8, 496 DOI: 10.1039/C5AY03074A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements