Issue 3, 2017

Quantitative bioimaging of Ca, Fe, Cu and Zn in breast cancer tissues by LA-ICP-MS

Abstract

In recent years, several studies have shown that concentrations of essential trace elements naturally present in breast tissues (e.g. Ca, Fe, Cu and Zn) may be significantly increased in breast cancer tissues. This is not surprising because essential elements are responsible for a great number of metabolic and biological processes. The essential trace elements may play some major functions in life: stabilizers, elements of structure, elements for hormonal function and cofactors in enzymes. In any case, the role of trace elements in breast cancer is complex, because it affects many types of molecules, cells and tissues. The combination of analytical and immunehistochemical assays is crucial for better understanding of the role of essential trace elements in promoting tumor growth and migration. Bioimaging analytical techniques with adequate spatial resolution are today of crucial interest to investigate the spatial distribution of trace elements and correlate them with histological aspects in breast tissues. In this vein, in this particular study the application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been used for the first time to investigate the actual distribution of the essential trace bioelements (Ca, Fe, Cu and Zn) in breast cancer tissues, and its possible application for tumor diagnostic and prognostic purposes. As has been demonstrated in this study, the levels of Ca, Fe, Cu and Zn in the tumor area are significantly higher than the levels found in the non-tumor one, as well as, a heterogeneous distribution of the investigated metals.

Graphical abstract: Quantitative bioimaging of Ca, Fe, Cu and Zn in breast cancer tissues by LA-ICP-MS

Article information

Article type
Technical Note
Submitted
25 oct. 2016
Accepted
05 janv. 2017
First published
21 janv. 2017

J. Anal. At. Spectrom., 2017,32, 671-677

Quantitative bioimaging of Ca, Fe, Cu and Zn in breast cancer tissues by LA-ICP-MS

R. González de Vega, M. L. Fernández-Sánchez, J. Pisonero, N. Eiró, F. J. Vizoso and A. Sanz-Medel, J. Anal. At. Spectrom., 2017, 32, 671 DOI: 10.1039/C6JA00390G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements