Issue 33, 2017

Coumarin-containing thermoresponsive hyaluronic acid-based nanogels as delivery systems for anticancer chemotherapy

Abstract

Multi-stimuli responsive nanogels based on biocompatible hydrophilic polymers have emerged as promising drug delivery systems to improve anticancer therapy with hydrophobic drugs, through increase of circulating-time in the bloodstream, tumor-targeting and reduction of systemic toxicity. This paper reports on the synthesis, characterization and biological perspectives of light- and thermoresponsive hyaluronic acid (HA)-based nanogels containing coumarin as the photocleavable group. Newly synthesized nanogels exhibited interesting features: formation by a temperature-triggered self-assembly process, successful incorporation of poorly water-soluble molecules, light-responsiveness as demonstrated by a significant shift in the critical aggregation temperature after light irradiation, efficient internalization by cancer cells overexpressing the CD44 receptor of HA, ability to circulate for a prolonged period of time in the bloodstream after intravenous injection in mice and considerable detection in tumor tissues. Our findings indicate that coumarin-containing HA-based nanogels may be promising delivery systems for anticancer chemotherapy.

Graphical abstract: Coumarin-containing thermoresponsive hyaluronic acid-based nanogels as delivery systems for anticancer chemotherapy

Supplementary files

Article information

Article type
Paper
Submitted
04 juin 2017
Accepted
22 juil. 2017
First published
25 juil. 2017

Nanoscale, 2017,9, 12150-12162

Coumarin-containing thermoresponsive hyaluronic acid-based nanogels as delivery systems for anticancer chemotherapy

T. F. Stefanello, B. Couturaud, A. Szarpak-Jankowska, D. Fournier, B. Louage, F. P. Garcia, C. V. Nakamura, B. G. De Geest, P. Woisel, B. van der Sanden and R. Auzély-Velty, Nanoscale, 2017, 9, 12150 DOI: 10.1039/C7NR03964F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements