Issue 21, 2019

One step phenol synthesis from benzene catalysed by nickel(ii) complexes

Abstract

Nickel(II)complexes of N4-ligands have been synthesized and characterized as efficient catalysts for the hydroxylation of benzene using H2O2. All the complexes exhibited Ni2+ → Ni3+ oxidation potentials of around 0.966–1.051 V vs. Ag/Ag+ in acetonitrile. One of the complexes has been structurally characterized and adopted an octahedral coordination geometry around the nickel(II) center. The complexes catalysed direct benzene hydroxylation using H2O2 as an oxygen source and afforded phenol up to 41% with a turnover number (TON) of 820. This is unprecedentedly the highest catalytic efficiency achieved to date for benzene hydroxylation using 0.05 mol% catalyst loading and five equivalents of H2O2. The benzene hydroxylation reaction possibly proceeds via the key intermediate bis(μ-oxo)dinickel(III) species, which was characterized by HR-MS, vibrational and electronic spectral methods, for almost all complexes. The formation constant of the key intermediate was calculated to be 5.61–9.41 × 10−2 s−1 by following the appearance of an oxo-to-Ni(III) LMCT band at around 406–413 nm. The intermediates are found to be very short-lived (t1/2, 73–123 s). The geometry of one of the catalytically active intermediates was optimized by DFT and its spectral properties were calculated by TD-DFT calculations, which are comparable to experimental spectral data. The kinetic isotope effect (KIE) values (0.98–1.05) support the involvement of nickel-bound oxygen species as an intermediate. The isotope-labeling experiments using H218O2 showed 92.46% incorporation of 18O, revealing that H2O2 is the key oxygen supplier to form phenol. The catalytic efficiencies of complexes are strongly influenced by the geometrical configuration of intermediates, and stereoelectronic and steric properties, which are fine-tuned by the ligand architecture.

Graphical abstract: One step phenol synthesis from benzene catalysed by nickel(ii) complexes

Supplementary files

Article information

Article type
Paper
Submitted
24 juil. 2019
Accepted
24 sept. 2019
First published
26 sept. 2019

Catal. Sci. Technol., 2019,9, 5991-6001

One step phenol synthesis from benzene catalysed by nickel(II) complexes

S. Muthuramalingam, K. Anandababu, M. Velusamy and R. Mayilmurugan, Catal. Sci. Technol., 2019, 9, 5991 DOI: 10.1039/C9CY01471C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements