Issue 11, 2019

Facile synthesis of highly conductive PEDOT:PSS via surfactant templates

Abstract

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) nanoparticles in powder form with high electrical conductivity were synthesized via chemical oxidative polymerization. In addition, the effects of EDOT : PSS weight ratio, EDOT : Na2S2O8 mole ratio, and surfactant concentration and type, namely hexadecyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS), and polyoxyethylene octyl phenyl ether (Triton X-100) on the properties of PEDOT:PSS were investigated. For the effect of EDOT : PSS weight ratio, at the EDOT : Na2S2O8 mole ratio of 1 : 1, the EDOT : PSS weight ratio of 1 : 11 was the optimal condition to obtain electrical conductivity of 999.74 ± 10.86 S cm−1 due to the high amount of PSS and SO42− available to interact with the PEDOT chain with a low % PSSNa. For the effect of EDOT : Na2S2O8 mole ratio, at the EDOT : PSS weight ratio of 1 : 11, the EDOT : Na2S2O8 mole ratio of 1 : 2 was the best condition as it provided the highest dopant (PSS and SO42−) amount, while the % PSSNa was relatively low. For the effect of surfactant type and concentration, at the EDOT : PSS weight ratio of 1 : 11 and EDOT : Na2S2O8 mole ratio of 1 : 2, Triton X-100 at 2.5CMC provided electrical conductivity higher than with CTAB and SDS. The thermal stability of PEDOT:PSS obtained from various conditions was investigated, and PEDOT:PSS without surfactant showed the highest thermal stability since it produced the highest char yield. In this study, the highest electrical conductivity of PEDOT:PSS, which was obtained in the presence of Triton X-100 to reduce the PSSNa amount, was 1879.49 ± 13.87 S cm−1, the highest value reported to date.

Graphical abstract: Facile synthesis of highly conductive PEDOT:PSS via surfactant templates

Article information

Article type
Paper
Submitted
24 oct. 2018
Accepted
06 févr. 2019
First published
21 févr. 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 6363-6378

Facile synthesis of highly conductive PEDOT:PSS via surfactant templates

P. Sakunpongpitiporn, K. Phasuksom, N. Paradee and A. Sirivat, RSC Adv., 2019, 9, 6363 DOI: 10.1039/C8RA08801B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements