Issue 6, 2020

Amorphous nickel–iron hydroxide films on nickel sulfide nanoparticles for the oxygen evolution reaction

Abstract

The development of earth-abundant and low-cost electrocatalysts with high performance toward the oxygen evolution reaction (OER) plays a key role in water splitting. Here, a novel OER electrocatalyst of Ni–Fe–OH/Ni3S2 nanoparticles on Ni foam (Ni–Fe–OH/Ni3S2/NF) was synthesized by a facile, ultrafast two-step method within 2 minutes. The obtained Ni–Fe–OH/Ni3S2/NF catalyst presents an excellent OER performance, only requiring a low overpotential of 268 mV to reach a current density of 10 mA cm−2 and a small Tafel slope of 54 mV dec−1 in 1 M KOH, which was sustained for 12 h at a current density of 175 mA cm−2 almost without any degradation. The superior OER performance of the Ni–Fe–OH/Ni3S2/NF catalyst is attributed to the increased active sites, the accelerated electron transfer between the electrode and electrolyte, and the synergistic effect between amorphous Ni–Fe–OH and Ni3S2. This work opens up a new avenue for preparing highly efficient heterostructure electrocatalysts toward the OER.

Graphical abstract: Amorphous nickel–iron hydroxide films on nickel sulfide nanoparticles for the oxygen evolution reaction

Supplementary files

Article information

Article type
Paper
Submitted
21 nov. 2019
Accepted
03 févr. 2020
First published
05 févr. 2020

Catal. Sci. Technol., 2020,10, 1708-1713

Amorphous nickel–iron hydroxide films on nickel sulfide nanoparticles for the oxygen evolution reaction

W. He, G. Ren, Y. Li, D. Jia, S. Li, J. Cheng, C. Liu, Q. Hao, J. Zhang and H. Liu, Catal. Sci. Technol., 2020, 10, 1708 DOI: 10.1039/C9CY02345C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements