Issue 2, 2020

Progress in BiFeO3-based heterostructures: materials, properties and applications

Abstract

BiFeO3-based heterostructures have attracted much attention for potential applications due to their room-temperature multiferroic properties, proper band gaps and ultrahigh ferroelectric polarization of BiFeO3, such as data storage, optical utilization in visible light regions and synapse-like function. Here, this work aims to offer a systematic review on the progress of BiFeO3-based heterostructures. In the first part, the optical, electric, magnetic, and valley properties and their interactions in BiFeO3-based heterostructures are briefly reviewed. In the second part, the morphologies of BiFeO3 and medium materials in the heterostructures are discussed. Particularly, in the third part, the physical properties and underlying mechanism in BiFeO3-based heterostructures are discussed thoroughly, such as the photovoltaic effect, electric field control of magnetism, resistance switching, and two-dimensional electron gas and valley characteristics. The fourth part illustrates the applications of BiFeO3-based heterostructures based on the materials and physical properties discussed in the second and third parts. This review also includes a future prospect, which can provide guidance for exploring novel physical properties and designing multifunctional devices.

Graphical abstract: Progress in BiFeO3-based heterostructures: materials, properties and applications

Article information

Article type
Review Article
Submitted
14 oct. 2019
Accepted
11 déc. 2019
First published
11 déc. 2019

Nanoscale, 2020,12, 477-523

Progress in BiFeO3-based heterostructures: materials, properties and applications

L. Yin and W. Mi, Nanoscale, 2020, 12, 477 DOI: 10.1039/C9NR08800H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements