Issue 10, 2020

Ultra-thin trinity coating enabled by competitive reactions for unparalleled molecular separation

Abstract

Advanced nanoporous membranes with outstanding permeance and exceptional molecular-separation efficiency are highly desirable for key industrial applications for alleviating the worldwide environmental/energy crisis. Herein, an ultra-thin trinity coating (∼33 nm) for unparalleled molecular separation is first built via covalent bond (CB)/coordination bond (COB) competitive reactions. The COBs generated among various polyphenols (PPhs), amino substances (ASs) and transition metal ions (TMIs) can limit Michael addition or Schiff base reactions for CB formation between PPhs and ASs during the mussel-inspired ternary coating process so as to elegantly engineer the trinity coating architecture on the porous substrate with ultra-thin thickness, excellent structural integration, high hydrophilicity and outstanding smoothness. Our molecular separation nanoporous membrane demonstrates ultra-high permeance (114 L m−2 h−1 bar−1 for Bromothymol Blue (BTB) and 104 L m−2 h−1 bar−1 for Congo Red (CR)) with complete rejection, which is much superior to that of state-of-the-art membranes and can realize the lower energy consumption of the membrane separation process. The CB/COB competitive reactions drastically enhanced the permeance of the trinity coated membrane by 533%, 238%, and 93% compared to that of the unary (pDA) and binary (pDA/PEI or pDA/Co2+) coated membranes. Meanwhile, the novel membrane with the perfectly tuned architecture by CB/COB competitive reactions possesses extraordinary dye/salt selectivity, tremendous acid/alkali–base stability and excellent anti-pollution capacity simultaneously. The new strategy for building an outstanding trinity coating via competitive reactions can pave a realistic way for fabricating unparalleled next-generation separation membranes.

Graphical abstract: Ultra-thin trinity coating enabled by competitive reactions for unparalleled molecular separation

Supplementary files

Article information

Article type
Paper
Submitted
19 nov. 2019
Accepted
07 janv. 2020
First published
07 janv. 2020

J. Mater. Chem. A, 2020,8, 5078-5085

Ultra-thin trinity coating enabled by competitive reactions for unparalleled molecular separation

Y. Zhang, J. Ma and L. Shao, J. Mater. Chem. A, 2020, 8, 5078 DOI: 10.1039/C9TA12670H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements