Issue 5, 2021

Improvement of the hydrogen storage characteristics of MgH2 with a flake Ni nano-catalyst composite

Abstract

Magnesium hydride (MgH2) is considered to be one of the most promising hydrogen storage materials owing to its safety profile, low cost and high hydrogen storage capacity. However, its slow kinetic performance and thermal stability limit the possibility of practical applications. Herein, it is confirmed that the hydrogen storage performance of MgH2 can be effectively improved via doping with a flake Ni nano-catalyst. According to experimental results, a MgH2 + 5 wt% Ni composite begins to dehydrogenate at almost 180 °C and could dehydrogenate 6.7 wt% within 3 min at 300 °C. After complete dehydrogenation, hydrogen can be absorbed below 50 °C, and 4.6 wt% H2 can be absorbed at 125 °C within 20 min at a hydrogen pressure of 3 MPa. In addition, the activation energies of MgH2 hydrogen absorption and dehydrogenation decreased by 28.03 and 71 kJ mol−1, respectively. Cycling stability testing showed that the hydrogen storage capacity decreases significantly in the first few cycles and decreases slightly after 10 cycles. Furthermore, it was found that Mg2Ni/Mg2NiH4 was formed initially during the hydrogen absorption or desorption reaction on the surface of Mg/MgH2, which acted as a “hydrogen pump”, accelerating the rates of hydrogen absorption and desorption.

Graphical abstract: Improvement of the hydrogen storage characteristics of MgH2 with a flake Ni nano-catalyst composite

Article information

Article type
Paper
Submitted
20 oct. 2020
Accepted
05 janv. 2021
First published
06 janv. 2021

Dalton Trans., 2021,50, 1797-1807

Improvement of the hydrogen storage characteristics of MgH2 with a flake Ni nano-catalyst composite

X. Yang, Q. Hou, L. Yu and J. Zhang, Dalton Trans., 2021, 50, 1797 DOI: 10.1039/D0DT03627G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements