Issue 4, 2022

Recent advances in nanotechnology-based COVID-19 vaccines and therapeutic antibodies

Abstract

COVID-19 has caused a global pandemic and millions of deaths. It is imperative to develop effective countermeasures against the causative viral agent, SARS-CoV-2 and its many variants. Vaccines and therapeutic antibodies are the most effective approaches for preventing and treating COVID-19, respectively. SARS-CoV-2 enters host cells through the activities of the virus-surface spike (S) protein. Accordingly, the S protein is a prime target for vaccines and therapeutic antibodies. Dealing with particles with dimensions on the scale of nanometers, nanotechnology has emerged as a critical tool for rapidly designing and developing safe, effective, and urgently needed vaccines and therapeutics to control the COVID-19 pandemic. For example, nanotechnology was key to the fast-track approval of two mRNA vaccines for their wide use in human populations. In this review article, we first explore the roles of nanotechnology in battling COVID-19, including protein nanoparticles (for presentation of protein vaccines), lipid nanoparticles (for formulation with mRNAs), and nanobodies (as unique therapeutic antibodies). We then summarize the currently available COVID-19 vaccines and therapeutics based on nanotechnology.

Graphical abstract: Recent advances in nanotechnology-based COVID-19 vaccines and therapeutic antibodies

Article information

Article type
Review Article
Submitted
13 juin 2021
Accepted
21 déc. 2021
First published
01 janv. 2022

Nanoscale, 2022,14, 1054-1074

Recent advances in nanotechnology-based COVID-19 vaccines and therapeutic antibodies

L. Du, Y. Yang, X. Zhang and F. Li, Nanoscale, 2022, 14, 1054 DOI: 10.1039/D1NR03831A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements