Issue 23, 2023

Recent advances in the modification of electrodes for trace metal analysis: a review

Abstract

This review paper summarizes the research published in the last five years on using different compounds and/or materials as modifiers for electrodes employed in trace heavy metal analysis. The main groups of modifiers are identified, and their single or combined application on the surface of the electrodes is discussed. Nanomaterials, film-forming substances, and polymers are among the most used compounds employed mainly in the modification of glassy carbon, screen-printed, and carbon paste electrodes. Composites composed of several compounds and/or materials have also found growing interest in the development of modified electrodes. Environmentally friendly substances and natural products (mainly biopolymers and plant extracts) have continued to be included in the modification of electrodes for trace heavy metal analysis. The main analytical performance parameters of the modified electrodes as well as possible interferences affecting the determination of the target analytes, are discussed. Finally, a critical evaluation of the main findings from these studies and an outlook discussing possible improvements in this area of research are presented.

Graphical abstract: Recent advances in the modification of electrodes for trace metal analysis: a review

Supplementary files

Article information

Article type
Critical Review
Submitted
21 juil. 2023
Accepted
25 août 2023
First published
25 août 2023
This article is Open Access
Creative Commons BY-NC license

Analyst, 2023,148, 5805-5821

Recent advances in the modification of electrodes for trace metal analysis: a review

K. Xhanari and M. Finšgar, Analyst, 2023, 148, 5805 DOI: 10.1039/D3AN01252B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements