Issue 11, 2023

Are MXenes suitable for soft multifunctional composites?

Abstract

MXenes are a family of two-dimensional (2D) nanomaterials known for their high electrical and thermal conductivity, as well as high aspect ratios. Recent research has focused on dispersing MXenes within compliant polymer matrices, aiming to create flexible and stretchable composites that harness MXenes’ exceptional conductivity and aspect ratios. Experimental findings demonstrate the potential of MXene polymer composites (MXPCs) as flexible electrical, thermal conductors, and high dielectric materials, with promising applications in soft matter engineered systems. However, the 2D structure of MXene inclusions and their relatively large elastic modulus can impart increased stiffness to the polymer matrix, posing limitations on the mechanical flexibility of these functional materials. Here, we introduce a modeling platform to predict the mechanics and functionality of MXene elastomer composites and assess their suitability as soft multifunctional materials. Our investigation primarily focuses on understanding the influence of MXenes’ size, layered structure, and percolation arrangements on the effective properties of the resulting composites. Through our model, we successfully determined the elastic modulus, thermal conductivity, and dielectric constant of MXene elastomer composites, and our results exhibit strong agreement with those obtained through finite element analysis. By utilizing this framework, we can theoretically identify the necessary microstructures of MXenes and guide the experiments, enabling the creation of MXPCs with the desired synergistic mechanical and functional properties.

Graphical abstract: Are MXenes suitable for soft multifunctional composites?

Supplementary files

Article information

Article type
Communication
Submitted
14 juin 2023
Accepted
22 août 2023
First published
30 août 2023

Mater. Horiz., 2023,10, 5110-5125

Are MXenes suitable for soft multifunctional composites?

C. Chiew and M. H. Malakooti, Mater. Horiz., 2023, 10, 5110 DOI: 10.1039/D3MH00916E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements