Issue 10, 2023

Transition metal chalcogenides for next-generation energy storage

Abstract

Transition-metal chalcogenide nanostructures provide a unique material platform to engineer next-generation energy storage devices such as lithium-ion, sodium-ion, and potassium-ion batteries and flexible supercapacitors. The transition-metal chalcogenide nanocrystals and thin films have enhanced electroactive sites for redox reactions and hierarchical flexibility of structure and electronic properties in the multinary compositions. They also consist of more earth-abundant elements. These properties make them attractive and more viable new electrode materials for energy storage devices compared to the traditional materials. This review highlights the recent advances in chalcogenide-based electrodes for batteries and flexible supercapacitors. The viability and structure–property relation of these materials are explored. The use of various chalcogenide nanocrystals supported on carbonaceous substrates, two-dimensional transition metal chalcogenides, and novel MXene-based chalcogenide heterostructures as electrode materials to improve the electrochemical performance of lithium-ion batteries is discussed. The sodium-ion and potassium-ion batteries offer a more viable alternative to lithium-ion technology as they consist of readily available source materials. Application of various transition metal chalcogenides such as MoS2, MoSe2, VS2, and SnSx, composite materials, and heterojunction bimetallic nanosheets composed of multi-metals as electrodes to enhance the long-term cycling stability, rate capability, and structural strength to counteract the large volume expansion during the ion intercalation/deintercalation processes is highlighted. The promising performances of layered chalcogenides and various chalcogenide nanowire compositions as electrodes for flexible supercapacitors are also discussed in detail. The review also details the progress made in new chalcogenide nanostructures and layered mesostructures for energy storage applications.

Graphical abstract: Transition metal chalcogenides for next-generation energy storage

Article information

Article type
Review Article
Submitted
23 déc. 2022
Accepted
23 févr. 2023
First published
24 févr. 2023
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2023,5, 2724-2742

Transition metal chalcogenides for next-generation energy storage

S. Palchoudhury, K. Ramasamy, J. Han, P. Chen and A. Gupta, Nanoscale Adv., 2023, 5, 2724 DOI: 10.1039/D2NA00944G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements