Issue 6, 2023

Compositing redox-rich Co–Co@Ni–Fe PBA nanocubes into cauliflower-like conducting polypyrrole as an electrode material in supercapacitors

Abstract

Supercapacitors (SCs) coupled with redox materials have been extensively investigated to maximize the energy density of SCs. Common metal–organic frameworks explicitly used for this purpose are Prussian blue analogs (PBAs). However, their low conductivity and number of external electroactive sites hinder their capacitance and reaction rate. Our work focuses on a material-level optimization strategy, including morphology modification and superstructure fabrication of PBA. We report the synthesis of Co–Co@Ni–Fe trimetallic core–shell PBA nanocubes containing an FeII/III redox couple in the Ni–Fe PBA shell over the conductive Co–Co PBA core. This complex underwent a reversible redox reaction and was further encapsulated in a polypyrrole (PPy) network as a redox additive to prepare a novel polymer-encapsulated double-PBA nanocube composite (Co–Co@Ni–Fe PBA–PPy). The composite exhibited a faradaic non-capacitive diffusion-dominated charge storage ability. It yielded an improved specific capacity of 318.1 C g−1 at 1 A g−1 with a capacity retention of 90% over 2000 cycles @15 A g−1. Furthermore, an asymmetric supercapacitor based on Co–Co@Ni–Fe PBA–PPy and activated carbon electrodes delivered a maximum energy density of 20 W h kg−1 at a power density of 808.9 W kg−1 within a 1.6 V voltage window. The electrochemical analysis demonstrated a considerable improvement in the charge-storage performance due to an increase in electron transfer, electrolyte diffusion, and electroactive area via strong electronic coupling between the Co–Co@Ni–Fe core–shell PBA and the PPy. Furthermore, this work helps to differentiate the composite's current contributions from the PBA and PPy. The detailed electrochemical characterization steps of these methods concerning redox additives integrated into conducting polymers are provided in this work.

Graphical abstract: Compositing redox-rich Co–Co@Ni–Fe PBA nanocubes into cauliflower-like conducting polypyrrole as an electrode material in supercapacitors

Supplementary files

Article information

Article type
Research Article
Submitted
11 nov. 2022
Accepted
13 janv. 2023
First published
13 janv. 2023

Mater. Chem. Front., 2023,7, 1110-1119

Compositing redox-rich Co–Co@Ni–Fe PBA nanocubes into cauliflower-like conducting polypyrrole as an electrode material in supercapacitors

P. Mukherjee, V. R. S., A. Borenstein and T. Zidki, Mater. Chem. Front., 2023, 7, 1110 DOI: 10.1039/D2QM01162J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements