Issue 5, 2023

The role of graphene in new thermoelectric materials

Abstract

Graphene has high electrical conductivity, making it an attractive material for thermoelectric applications. However, its high thermal conductivity is a major challenge, and initial studies indicate that using pristine graphene alone cannot achieve optimal thermoelectric performance. Therefore, researchers are exploring ways to improve thermoelectric materials by either leveraging graphene's high intrinsic electrical conductivity or compounding graphene with additives to reduce the intrinsic thermal conductivity of the materials. Therefore, the research focus is now being shifted to graphene composites, primarily with polymer/organic conductors. One promising avenue of research is the development of graphene composites with polymer or organic conductors, which have shown some improvements in thermoelectric performance. However, the achieved “dimensionless figure of merit (ZT)” values of these composites are still far lower than those of common inorganic semiconductors. An alternative approach involves incorporating a very small amount of graphene into inorganic materials to improve their overall thermoelectric properties. These new concepts have successfully addressed the detrimental effects of graphene's intrinsic thermal conductivity, with the added interfaces in the matrix due to the presence of graphene layers working to enhance the properties of the host material. The use of graphene presents a promising solution to the longstanding challenge of developing high-performance and cost-effective thermoelectric materials. This paper discusses these innovative research ideas, highlighting their potential for revolutionizing the field of thermoelectric materials.

Graphical abstract: The role of graphene in new thermoelectric materials

Supplementary files

Article information

Article type
Perspective
Submitted
22 févr. 2023
Accepted
22 mars 2023
First published
23 mars 2023
This article is Open Access
Creative Commons BY license

Energy Adv., 2023,2, 606-614

The role of graphene in new thermoelectric materials

R. Mulla, A. O. White, C. W. Dunnill and A. R. Barron, Energy Adv., 2023, 2, 606 DOI: 10.1039/D3YA00085K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements