Issue 44, 2024

Direct O2 mediated oxidation of a Ni(ii)N3O structural model complex for the active site of nickel acireductone dioxygenase (Ni-ARD): characterization, biomimetic reactivity, and enzymatic implications

Abstract

A new biomimetic model complex of the active site of acireductone dioxygenase (ARD) was synthesized and crystallographically characterized ([Ni(II)(N-(ethyl-N′Me2)(Py)(2-t-ButPhOH))(OTf)]-1). 1 displays carbon–carbon oxidative cleavage activity in the presence of O2 towards the substrate 2-hydroxyacetophenone. This reactivity was monitored via UV-Visible and NMR spectroscopy. We postulate that the reactivity of 1 with O2 leads to the formation of a putative Ni(III)-superoxo transient species resulting from the direct activation of O2via the nickel center during the oxidative reaction. This proposed intermediate and reaction mechanism were studied in detail using DFT calculations. 1 and its substrate bound derivatives display reactivity toward mild outer sphere oxidants, suggesting ease of access to high valent Ni coordination complexes, consistent with our calculations. If confirmed, the direct activation of O2 at a nickel center could have implications for the mechanism of action of ARD and other nickel-based dioxygenases and their respective non-traditional, enzymatic moonlighting functions, as well as contribute to a general understanding of direct oxidation of nickel(II) coordination complexes by O2.

Graphical abstract: Direct O2 mediated oxidation of a Ni(ii)N3O structural model complex for the active site of nickel acireductone dioxygenase (Ni-ARD): characterization, biomimetic reactivity, and enzymatic implications

Supplementary files

Article information

Article type
Paper
Submitted
05 sept. 2024
Accepted
10 oct. 2024
First published
11 oct. 2024

Dalton Trans., 2024,53, 17852-17863

Direct O2 mediated oxidation of a Ni(II)N3O structural model complex for the active site of nickel acireductone dioxygenase (Ni-ARD): characterization, biomimetic reactivity, and enzymatic implications

K. E. Kirsch, M. E. Little, T. R. Cundari, E. El-Shaer, G. Barone, V. M. Lynch and S. A. Toledo, Dalton Trans., 2024, 53, 17852 DOI: 10.1039/D4DT02538E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements