Issue 18, 2024

Opening pathways for the conversion of woody biomass into sustainable aviation fuel via catalytic fast pyrolysis and hydrotreating

Abstract

Meeting aggressive decarbonization targets set by the International Civil Aviation Organization (ICAO) will require the rapid development of technologies to produce sustainable aviation fuel (SAF). Catalytic fast pyrolysis (CFP) can support these efforts by opening pathways for the conversion of woody biomass into an upgraded biogenic oil that can be further processed to SAF and other fuels. However, the absence of end-to-end experimental data for the process leads to uncertainty in the yield, product quality, costs, and sustainability of the pathway. The research presented here serves to address these needs through a series of integrated experimental campaigns in which real biomass feedstocks are converted to a final SAF product using large bench-scale continuous reactor systems. For these campaigns, the degree of catalytic upgrading during CFP was varied to produce CFP-oils with oxygen contents of 17 and 20 wt% on a dry basis. The CFP-oils were then hydrotreated and distilled into gasoline, diesel, and SAF fractions. Detailed yield and compositional data were obtained for each step of the process to inform technoeconomic and lifecycle analyses, and the fuel properties of the SAF fraction were evaluated to provide first-of-its-kind insight into the quality of the final product. This research reveals opportunities to optimize process carbon efficiency by tuning the degree of catalytic upgrading during the CFP step and highlights routes to produce a high-quality cycloalkane-rich SAF with 85–92% reduction in greenhouse gas emissions compared to fossil-based pathways.

Graphical abstract: Opening pathways for the conversion of woody biomass into sustainable aviation fuel via catalytic fast pyrolysis and hydrotreating

Supplementary files

Article information

Article type
Paper
Submitted
09 juil. 2024
Accepted
07 août 2024
First published
09 août 2024
This article is Open Access
Creative Commons BY license

Green Chem., 2024,26, 9768-9781

Opening pathways for the conversion of woody biomass into sustainable aviation fuel via catalytic fast pyrolysis and hydrotreating

M. B. Griffin, K. Iisa, A. Dutta, X. Chen, C. J. Wrasman, C. Mukarakate, M. M. Yung, M. R. Nimlos, L. Tuxworth, X. Baucherel, S. M. Rowland and S. E. Habas, Green Chem., 2024, 26, 9768 DOI: 10.1039/D4GC03333G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements