Issue 21, 2024

On the VOC loss in NiO-based inverted metal halide perovskite solar cells

Abstract

Recent reports have shown that nickel oxide (NiO) when adopted as a hole transport layer (HTL) in combination with organic layers, such as PTAA or self-assembled monolayers (SAMs), leads to a higher device yield for both single junction as well as tandem devices. Nevertheless, implementing NiO in devices without PTAA or SAM is seldom reported to lead to high-performance devices. In this work, we assess the effect of key NiO properties deemed relevant in literature, namely- resistivity and surface energy, on the device performance and systematically compare the NiO-based devices with those based on PTAA. To this purpose, (thermal) atomic layer deposited (ALD) NiO (NiOBu-MeAMD), Al-doped NiO (Al:NiOBu-MeAMD), and plasma-assisted ALD NiO (NiOMeCp) films, characterized by a wide range of resistivity, are investigated. Although Al:NiOBu-MeAMD (∼400 Ω cm) and NiOMeCp(∼80 Ωcm) films have a lower resistivity than NiOBu-MeAMD (∼10 kΩ cm), the Al:NiOBu-MeAMD and NiOMeCp-based devices are found to have a modest open circuit voltage (VOC) gain of ∼30 mV compared to NiOBu-MeAMD-based devices. Overall, the best-performing NiO-based devices (∼14.8% power conversion efficiency (PCE)) still lag behind the PTAA-based devices (∼17.5%), primarily due to a VOC loss of ∼100 mV. Further investigation based on light intensity analysis of the VOC and FF and the decrease in VOC compared to the quasi-Fermi level splitting (QFLS) indicates that the VOC is limited by trap-assisted recombination at the NiO/perovskite interface. Additionally, SCAPS simulations show that the presence of a high interfacial trap density leads to a VOC loss in NiO-based devices. Upon passivation of the NiO/perovskite interface with Me-4PACz, the VOC increases by 170–200 mV and is similar for NiOBu-MeAMD and Al:NiOBu-MeAMD, leading to the conclusion that there is no influence of the NiO resistivity on the VOC once interface passivation is realized. Finally, our work highlights the necessity of comparing NiO-based devices with state-of-the-art HTL-based devices to draw conclusion about the influence of specific material properties on device performance.

Graphical abstract: On the VOC loss in NiO-based inverted metal halide perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
31 août 2024
Accepted
30 sept. 2024
First published
14 oct. 2024
This article is Open Access
Creative Commons BY license

Mater. Adv., 2024,5, 8652-8664

On the VOC loss in NiO-based inverted metal halide perovskite solar cells

K. Mukherjee, D. Kreugel, N. Phung, C. van Helvoirt, V. Zardetto and M. Creatore, Mater. Adv., 2024, 5, 8652 DOI: 10.1039/D4MA00873A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements