Extrinsic chirality tailors Stokes parameters in simple asymmetric metasurfaces†
Abstract
Metasurfaces tailor electromagnetic confinement at the nanoscale and can be appropriately designed for polarization-dependent light–matter interactions. Adding the asymmetry degree to the desing allows for circular polarizations of opposite handedness to be differently absorbed or emitted, which is of interest in fields spanning from chiral sensing to flat optics. Here, we show that simple, low-cost asymmetric metasurfaces can control Stokes parameters in the transmitted far-field. With only 50 nm of asymmetric plasmonic shells on self-assembled polystyrene nanospheres, our metasurfaces allow for great spectral and incident angle tunability. We first investigated broadband extrinsic chirality in metasurfaces with asymmetric plasmonic semishells; we found high extinction circular dichroism (CD) in the near-infrared range. We then excited it with linear polarization and performed hyperspectral Stokes polarimetry on the transmitted field. We showed that the S3 parameter follows the behavior of CD in extinction, and that the output field position on the Poincaré sphere can be widely controlled by using the incidence angle and wavelength. Furthermore, simulations agreed well with the experiments and showed how the near-field chiro-optical response influences the extrinsic chiral behavior in absorption and the polarization state of the transmitted field.
- This article is part of the themed collection: Nanoscale 2025 Emerging Investigators