Issue 17, 2024

Enhanced photoelectrochemical water splitting using carbon cloth functionalized with ZnO nanostructures via polydopamine assisted electroless deposition

Abstract

ZnO nanorods (ZnO-nr) have been widely studied as a promising nanomaterial for photoelectrochemical water splitting. However, almost all prior studies employed planar electrodes. Here, we investigated the performance of ZnO nanorods on a fibrous carbon cloth (CC) electrode, which offers a larger surface area for functionalization of photocatalysts. ZnO nanorods and Ni nanofilm were deposited on carbon cloth substrates for investigation as the photoanode and cathode of a photoelectrochemical water splitting setup, respectively. The use of polydopamine in the electroless deposition of ZnO ensured a uniform distribution of nanorods that were strongly adherent to the microfiber surface of the carbon cloth. Compared to ZnO nanorods grown on planar ITO/glass substrates, the CC-based ZnO photoanodes exhibited smaller onset potentials (1.1 VRHEvs. 1.8 VRHE), ∼40× larger dark faradaic currents at 1.23 VRHE and 5.5×–9× improvement in photoconversion efficiencies. Ni/CC cathodes were also found to exhibit a lower overpotential@10 mA cm−2 than Ni/Cu by 90 mV. The photocurrent obtained from the ZnO-nr/CC anode was highly stable across an hour and the peak current decreased by only 5% across 5 cycles of illumination, compared to 72% for the planar ZnO-nr/ITO anode. However, the response of the CC-based setups to changes in the illumination conditions was slower, taking hundreds of seconds to reach peak photocurrent, compared to tens of seconds for the planar electrodes. Using cyclic voltammetry, the double-layer capacitance of the electrodes was measured, and it was shown that the increased efficiency of the ZnO-nr/CC anode was due to a 2 order of magnitude increase in electrochemically active sites provided by the copious microfiber surface of the carbon cloth.

Graphical abstract: Enhanced photoelectrochemical water splitting using carbon cloth functionalized with ZnO nanostructures via polydopamine assisted electroless deposition

Supplementary files

Article information

Article type
Paper
Submitted
23 févr. 2024
Accepted
26 mars 2024
First published
12 avr. 2024
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2024,16, 8401-8416

Enhanced photoelectrochemical water splitting using carbon cloth functionalized with ZnO nanostructures via polydopamine assisted electroless deposition

I. P. Seetoh, A. K. Ramesh, W. X. Tan and C. Q. Lai, Nanoscale, 2024, 16, 8401 DOI: 10.1039/D4NR00761A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements