Issue 32, 2024

4f-Orbital mixing increases the magnetic susceptibility of Cp′3Eu

Abstract

Traditional models of lanthanide electronic structure suggest that bonding is predominantly ionic, and that covalent orbital mixing is not an important factor in determining magnetic properties. Here, 4f orbital mixing and its impact on the magnetic susceptibility of Cp′3Eu (Cp′ = C5H4SiMe3) was analyzed experimentally using magnetometry and X-ray absorption spectroscopy (XAS) methods at the C K-, Eu M5,4-, and L3-edges. Pre-edge features in the experimental and TDDFT-calculated C K-edge XAS spectra provided unequivocal evidence of C 2p and Eu 4f orbital mixing in the π-antibonding orbital of a′ symmetry. The charge-transfer configurations resulting from 4f orbital mixing were identified spectroscopically by using Eu M5,4-edge and L3-edge XAS. Modeling of variable-temperature magnetic susceptibility data showed excellent agreement with the XAS results and indicated that increased magnetic susceptibility of Cp′3Eu is due to removal of the degeneracy of the 7F1 excited state due to mixing between the ligand and Eu 4f orbitals.

Graphical abstract: 4f-Orbital mixing increases the magnetic susceptibility of Cp′3Eu

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
25 févr. 2024
Accepted
05 juin 2024
First published
11 juin 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 12667-12675

4f-Orbital mixing increases the magnetic susceptibility of Cp′3Eu

S. O. Gunther, Y. Qiao, P. W. Smith, S. R. Ciccone, A. S. Ditter, D. N. Huh, L. M. Moreau, D. K. Shuh, T. Sun, P. L. Arnold, C. H. Booth, W. A. de Jong, W. J. Evans, W. W. Lukens and S. G. Minasian, Chem. Sci., 2024, 15, 12667 DOI: 10.1039/D4SC01300J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements