Issue 48, 2024

Spontaneous emergence of motion of an isotropic active particle in a Carreau fluid

Abstract

Active particles are self-propelling in nature due to the generation of a fore-aft asymmetry in the concentration of solutes around their surface. Both the surface activity and mobility play an important role in the particle dynamics. The solutes are the products of the chemical reaction between the active particle surface and suspending medium. Unlike Janus particles, isotropic active particles have been shown to undergo spontaneous self-propulsion beyond a critical particle size (or the Péclet number). Compared to Janus active particles, there is a third ingredient, namely, advection-induced instability that dictates the dynamics of such particles. The present study numerically investigates the role played by shear rate-dependent viscosity of a suspending medium in the self-phoretic dynamics of such isotropic active particles. Towards this, a non-Newtonian Carreau fluid is taken as the suspending medium. One of the important findings of this study is the presence of a second critical Péclet number beyond which the spontaneous motion of the particle ceases to exist. Even though this critical Péclet number had been previously investigated for Newtonian fluids, strong dependence of the former on the rheology of the suspending medium was not explored. The analysis also shows that a shear thinning fluid significantly reduces the maximum velocity of the particle. In addition, confinement is found to have a significant effect on the axial propulsive velocity of the particle suspended in a Carreau fluid.

Graphical abstract: Spontaneous emergence of motion of an isotropic active particle in a Carreau fluid

Article information

Article type
Paper
Submitted
10 sept. 2024
Accepted
24 nov. 2024
First published
25 nov. 2024
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2024,20, 9683-9693

Spontaneous emergence of motion of an isotropic active particle in a Carreau fluid

S. Shreekrishna, S. Mandal and S. Das, Soft Matter, 2024, 20, 9683 DOI: 10.1039/D4SM01070A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements