The impact of surfaces on indoor air chemistry following cooking and cleaning

Abstract

Cooking and cleaning are common sources of indoor air pollutants, including volatile organic compounds (VOCs). The chemical fate of VOCs indoors is determined by both gas-phase and multi-phase chemistry, and can result in the formation of potentially hazardous secondary pollutants. Chemical interactions at the gas-surface boundary play an important role in indoor environments due to the characteristically high surface area to volume ratios (SAVs). This study first characterises the VOC emissions from a typical cooking and cleaning activity in a semi-realistic domestic kitchen, using real-time measurements. While cooking emitted a larger amount of VOCs overall, both cooking and cleaning were sources of chemically reactive monoterpenes (peak mixing ratios 7 ppb and 2 ppb, respectively). Chemical processing of the VOC emissions from sequential cooking and cleaning activities was then simulated in a kitchen using a detailed chemical model. Results showed that ozone (O3) deposition was most effective onto plastic and soft furnishings, while wooden surfaces were the most effective at producing formaldehyde following multi-phase chemistry. Subsequent modelling of cooking and cleaning emissions using a range of measured kitchen SAVs revealed that indoor oxidant levels and the subsequent chemistry, are strongly influenced by the total and material-specific SAV of the room. O3 mixing ratios ranged from 1.3–7.8 ppb across 9 simulated kitchens, with higher concentrations of secondary pollutants observed at higher O3 concentration. Increased room volume, decreased total SAV, decreased SAVs of plastic and soft furnishings, and increased wood SAV contributed to elevated formaldehyde and total peroxyacetyl nitrates (PANs) mixing ratios, of up to 1548 ppt and 643 ppt, respectively, following cooking and cleaning. Therefore, the size and material composition of indoor environments has the potential to impact the chemical processing of VOC emissions from common occupant activities.

Graphical abstract: The impact of surfaces on indoor air chemistry following cooking and cleaning

Supplementary files

Article information

Article type
Paper
Submitted
08 juil. 2024
Accepted
06 sept. 2024
First published
13 sept. 2024
This article is Open Access
Creative Commons BY license

Environ. Sci.: Processes Impacts, 2025, Advance Article

The impact of surfaces on indoor air chemistry following cooking and cleaning

E. Harding-Smith, H. L. Davies, C. O'Leary, R. Winkless, M. Shaw, T. Dillon, B. Jones and N. Carslaw, Environ. Sci.: Processes Impacts, 2025, Advance Article , DOI: 10.1039/D4EM00410H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements