Enzyme-free detection of creatinine as a kidney dysfunction biomarker using TiO2 flow-through membranes

Abstract

TiO2 nanotube flow-through membranes (TNTsM) were fabricated via anodization of Ti foil and explored as a biosensing platform for creatinine detection. The electrodes were prepared in different configurations including TNT membrane with top surface up (TNTsMTU/TNPs/FTO), TNT membrane with bottom surface up (TNTsMBU/TNPs/FTO), TNT membrane with top surface up containing nanograss (TNTsMNG/TNPs/FTO), and TNTs/NPs/FTO and TiO2 nanoparticles (TNPs) film on fluorine doped tin oxide (TNPs/FTO). Electrochemical studies depict the higher electrochemical activity (sensitivity ∼19.88 μA μM−1 cm−2) of TNTsMTU/TNPs/FTO towards creatinine compared to other configurations. This exceptional performance of the TNTsMTU/TNPs/FTO electrode results from the flow-through nature of TNTsM and the removal of the bottom oxide barrier layer through etching in H2O2. The underlying layer of TiO2 NPs also contributes to the higher current response of the TNTsMTU/TNPs/FTO. The relevance of the biosensor structural design is demonstrated by the increased amperometric response of TNTsMTU/TNPs/FTO and greater redox peak current in cyclic voltammograms. Furthermore, the higher selectivity, stability, and reproducibility of the electrode can be due to the suitable redox potential, chemical stability, and controlled fabrication process of TNT membranes.

Graphical abstract: Enzyme-free detection of creatinine as a kidney dysfunction biomarker using TiO2 flow-through membranes

Supplementary files

Article information

Article type
Paper
Submitted
10 juil. 2024
Accepted
30 nov. 2024
First published
02 déc. 2024
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2025, Advance Article

Enzyme-free detection of creatinine as a kidney dysfunction biomarker using TiO2 flow-through membranes

N. Khaliq, G. Ali, M. A. Rasheed, M. Khan, W. Muhammad, P. Schmuki and S. Karim, Nanoscale Adv., 2025, Advance Article , DOI: 10.1039/D4NA00562G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements