Linking structural and rheological memory in disordered soft materials
Abstract
Linking the macroscopic flow properties and nanoscopic structure is a fundamental challenge to understanding, predicting, and designing disordered soft materials. Under small stresses, these materials are soft solids, while larger loads can lead to yielding and the acquisition of plastic strain, which adds complexity to the task. In this work, we connect the transient structure and rheological memory of a colloidal gel under cyclic shearing across a range of amplitudes via a generalized memory function using rheo-X-ray photon correlation spectroscopy (rheo-XPCS). Our rheo-XPCS data show that the nanometer scale aggregate-level structure recorrelates whenever the change in recoverable strain over some interval is zero. The macroscopic recoverable strain is therefore a measure of the nano-scale structural memory. We further show that yielding in disordered colloidal materials is strongly heterogeneous and that memories of prior deformation can exist even after the material has been subjected to flow a colloidal gel under cyclic shearing across a range of amplitudes via a generalized memory function using rheo-X-ray photon correlation spectroscopy (rheo-XPCS). Our rheo-XPCS data show that the nanometer scale aggregate-level structure recorrelates whenever the change in recoverable strain over some interval is zero. The macroscopic recoverable strain is therefore a measure of the nano-scale structural memory. We further show that yielding in disordered colloidal materials is strongly heterogeneous and that memories of prior deformation can exist even after the material has been subjected to flow.
- This article is part of the themed collection: Soft Matter Emerging Investigators Series