Issue 24, 2016

Synergizing nanocomposites of CdSe/TiO2 nanotubes for improved photoelectrochemical activity via thermal treatment

Abstract

In this work, we show the effect of the thermal treatment temperature on the photoelectrochemical (PEC) activity of CdSe/TiO2 nanocomposites. TiO2 nanotubes (NTs) were synthesized by anodization and the nanocomposites were obtained by depositing CdSe clusters via magnetron sputtering. A two-step thermal treatment was performed: heating the TiO2 NTs at different temperatures prior to CdSe deposition and further heating the CdSe/TiO2 nanocomposites. The nanocomposites were characterized by Rutherford backscattering spectroscopy (RBS), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV-Vis spectrophotometry, and electrochemical impedance spectroscopy (EIS). To compare the PEC performance of the CdSe/TiO2 nanocomposites and pristine TiO2 NTs, linear sweep voltammetry (LSV) curves were obtained under visible light and under 1 sun illumination. It was observed that CdSe incorporation into the TiO2 template enhances the visible light absorbance thereby improving the PEC performance of the nanocomposites. We have found that the optical, structural and PEC properties of the CdSe/TiO2 nanocomposites are dependent on the thermal treatment temperature of the TiO2 nanotubular substrate, prior to CdSe deposition. Moreover, a three-fold improvement in photocurrent was observed upon further thermal treatment of the obtained nanocomposite.

Graphical abstract: Synergizing nanocomposites of CdSe/TiO2 nanotubes for improved photoelectrochemical activity via thermal treatment

Article information

Article type
Paper
Submitted
18 janv. 2016
Accepted
04 mars 2016
First published
07 mars 2016

Dalton Trans., 2016,45, 9925-9931

Synergizing nanocomposites of CdSe/TiO2 nanotubes for improved photoelectrochemical activity via thermal treatment

J. A. Fernandes, S. Khan, F. Baum, E. C. Kohlrausch, J. A. Lucena dos Santos, D. L. Baptista, S. R. Teixeira, J. Dupont and M. J. L. Santos, Dalton Trans., 2016, 45, 9925 DOI: 10.1039/C6DT00235H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements