Issue 41, 2019

Towards efficient and stable perovskite solar cells employing non-hygroscopic F4-TCNQ doped TFB as the hole-transporting material

Abstract

Designing an efficient and stable hole transport layer (HTL) material is one of the essential ways to improve the performance of organic–inorganic perovskite solar cells (PSCs). Herein, for the first time, an efficient model of a hole transport material (HTM) is demonstrated by optimized doping of a conjugated polymer TFB (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl)diphenylamine)]) with a non-hygroscopic p-type dopant F4-TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) for high-efficiency PSCs. The PSC with the F4-TCNQ doped TFB exhibits the best power conversion efficiency (PCE) of 17.46%, which surpasses that of the reference devices, i.e., 16.64 (LiTFSI + TBP-doped Spiro-OMeTAD as the HTM) and 11.01% (LiTFSI + TBP-doped TFB as the HTM). F4-TCNQ doped TFB was believed to favor efficient charge and energy transfer between the perovskite and the hole transport layer and to reduce charge recombination as evidenced by steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) analysis. Moreover, the hydrophobic nature of F4-TCNQ contributed to enhancing the stability of the device under ambient conditions with a RH of 45%. The device reported herein retained ca. 80% of its initial efficiency after 10 days, significantly superior to both LiTFSI + TBP-doped Spiro-OMeTAD (ca. 30%) and LiTFSI + TBP-doped TFB (ca. 10%) based counterparts. This simple yet novel strategy paves the way for demonstrating a promising route for a wide range of highly efficient solar cells and other photovoltaic applications.

Graphical abstract: Towards efficient and stable perovskite solar cells employing non-hygroscopic F4-TCNQ doped TFB as the hole-transporting material

Supplementary files

Article information

Article type
Paper
Submitted
07 juil. 2019
Accepted
07 oct. 2019
First published
07 oct. 2019

Nanoscale, 2019,11, 19586-19594

Towards efficient and stable perovskite solar cells employing non-hygroscopic F4-TCNQ doped TFB as the hole-transporting material

H. Kwon, J. W. Lim, J. Han, L. N. Quan, D. Kim, E. Shin, E. Kim, D. Kim, Y. Noh, I. Chung and D. H. Kim, Nanoscale, 2019, 11, 19586 DOI: 10.1039/C9NR05719F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements