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Machine learning (ML) integrated density functional theory (DFT) calculations have recently been used to

accelerate the design and discovery of heterogeneous catalysts such as single atom catalysts (SACs)

through the establishment of deep structure–activity relationships. This review provides recent progress

in the ML-aided rational design of heterogeneous catalysts with the focus on SACs in terms of

structure–activity relationships, feature importance analysis, high-throughput screening, stability, and

metal–support interactions for electrochemistry. Support vector machine (SVM), random forest

regression (RFR), and deep neural networks (DNN) along with atomic properties are mainly used for the

design of SACs. The ML results have shown that the number of electrons in the d orbital, oxide

formation enthalpy, ionization energy, Bader charge, d-band center, and enthalpy of vaporization are

mainly the most important parameters for the defining of the structure–activity relationships for

electrochemistry. However, the black-box nature of ML techniques occasionally makes a physical

interpretation of descriptors, such as the Bader charge, d-band center, and enthalpy of vaporization,

non-trivial. At the current stage, ML application is limited by the lack of a large and high-quality database.

Future prospects for the development of a large database and a generalized ML algorithm for SAC

design are discussed to give insights for further studies in this field.
1. Introduction

Heterogeneous catalysts play important roles in the synthesis of
high-value chemicals through thermal, electrochemical, and
photochemical reactions. Designing improved catalysts
requires deep understanding of how the composition and pro-
cessing affect the properties at the interface, but their progress
is hindered due to the complexity in experimental and theo-
retical investigations.1 Thus the successes have oen involved
time- and resource-consuming trial-and-error experimental and
theoretical investigations. On the other hand, recent advances
in Quantum Mechanics (QM) calculations provides accurate
information about how molecules react at the interface to form
various products, but QM calculations are limited in the size of
the system and the time scale of the simulations. In order to
discover new catalysts for specic applications, a combination
of time-consuming experimental and QM studies is used to
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develop atomic level understanding of the fundamental mech-
anisms and to develop preparation-structure or structure–
activity relationships. Accordingly, there is a huge demand for
the accelerated discovery of novel catalysts with desired activi-
ties. Machine Learning (ML)2–4 as a data-intensive tool can
accelerate time-consuming experimental and QM studies to
predict the catalytic activity in a vast dimensional space of
heterogeneous catalysis.

Fig. 1 illustrates the general workow for the integration of
QM calculations and ML for the accelerated discovery of
heterogeneous and single atom catalysts (SACs). The predicted
data from QM calculations and feature vectors are used to
design and train ML algorithms. The trainedML algorithms will
then be used for not only the prediction of the optimal activity
of heterogeneous catalysts, but also for performing feature
importance analysis. Subsequently, optimized catalysts will be
used for the desired reaction to produce valuable chemicals and
fuels.

Although the ML-assisted prediction of a single physical
property such as formation energies5 and band gaps6 is widely
applied for the purpose of materials discovery,7–10 its application
for heterogeneous catalyst design and discovery11,12 is still in its
early stage.13 Here, ML as a supportive tool, aims to guide, not to
replace experiments and QM calculations in the search for ideal
catalysts.14 However, the main hurdles for employing ML in
J. Mater. Chem. A, 2022, 10, 15309–15331 | 15309
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Fig. 1 The general workflow for the integration of QM calculations and ML for the rational design of heterogeneous catalysts. The process
contains several steps: data generation using QM calculations, training of ML, optimization, and feature importance analysis, and using designed
catalysts to produce chemicals and fuels.
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heterogeneous catalyst design are the lack of a consistent
database, the lack of a universal ML algorithm, and the exis-
tence of only a few descriptors as input features for ML.15

Herein, we review recent studies reporting the incorporation
of ML into QM calculations (typically density functional theory
(DFT) calculations) and experiments to accelerate heteroge-
neous catalyst design and discovery for various reactions.
Recent review papers have summarized the recent studies on
the application of ML for catalytic reactions,16–20 reaction
prediction,21 discovery of catalysts,13,22–27 inverse design of
catalysts,28 and catalysis informatics.29,30 In this review paper,
we focus mainly on the different aspects of ML in experimental
and theoretical studies with an emphasis on the limitations and
hurdles of ML in heterogeneous catalyst design. Inspired by the
application of ML in heterogeneous catalyst design, we
continue with a comprehensive review on the application of ML
in SAC design and discovery with an emphasis on ML algo-
rithms, different SACs, environmental effects, stability,
support–metal interaction, structure–activity relationships, and
high-throughput screening. Recent ndings on the input
features of ML and their importance for different electro-
chemical reactions will be reviewed, where the isolated elec-
trons in d orbitals have been demonstrated to play a key role in
15310 | J. Mater. Chem. A, 2022, 10, 15309–15331
the nitrogen reduction reaction (NRR).31 Subsequently, the
application of different ML algorithms in several examples
including the O2 reduction reaction (ORR), O2 evolution reac-
tion (OER), CO2 reduction reaction (CO2RR), NRR, and H2

evolution reaction (HER) will be provided to demonstrate the
potential application of ML for the design and discovery of SACs
for electroreduction reactions. Finally, a summary and future
prospects in the area of ML-guided SAC and DAC discovery are
provided and discussed.
2. Machine learning (ML) algorithms

The most important ML algorithms applied for the establish-
ment of deep structure–activity relationships are normally
support vector machine (SVM), random forest regression (RFR),
deep neural networks (DNN), sure independence screening and
sparsifying (SISSO), and Gaussian process regression (GPR). As
shown in Fig. 2a, SVM as a binary classication and regression
algorithm classies data points into two distinct categories by
using hyperplanes.32 The SVM assigns each point of training
data to one of two classes and minimizes the error between the
classes by dividing the categories using a hyperplane, which
maximize the margin around the hyperplane. The hyperplane is
This journal is © The Royal Society of Chemistry 2022

https://doi.org/10.1039/d2ta02039d


Fig. 2 Machine learning algorithms. (a) Schematic of the SVM algorithm. The hyperplane divides SACs into two distinct classes based on the
largest distance between the data points placed between the support vectors. Class 1 and class 2 (red and blue circles) show the SACs with similar
properties based on features x1 and x2. (b) Schematic of RFR algorithm. Orange and green circles represent decision nodes containing ‘if/then’
statements. The result that is predicted by the highest number of decision trees (majority voting) is given as the output of RFR algorithm. (c)
Schematic of DNN. Circles represent neurons in the input, hidden, and output layers of the DNN. Neurons are interconnected using the black
lines. (d) Schematic of the GPR algorithm. Predicted mean (red line) and confidence interval (light orange interval) for the GPR algorithm trained
based on the input dataset (blue dots).
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completely dened by the data points that are closest to the
plane and between the support vectors. SVM can also be used in
mapping the non-separable data through the radial basis
function (RBF) kernel by transforming a real space into
a higher-dimensional space through several hyperplanes:33,34

f̂ ðxÞ ¼
XN
x

ukGðx� xkÞ (1)

in which G is a radially symmetric function of its argument,
G(r) ¼ f(jrj), x is the vector of joint angles or other parameters
describing the current pose of the skeleton, xk is the pose of the
kth example, and uk represents the different weights of each
vertex coefficient. SVM is highly efficient in terms of memory
usage; however, the boundary between categories may become
obscured when there are a large number of training data points.
SVM can also create both the linear and the non-linear model,
This journal is © The Royal Society of Chemistry 2022
and the latter one is based on a kernel-based regression tech-
nique.35 When comparing SVMs and the kernel ridge regression
(KRR) algorithm, no big performance differences are to be ex-
pected. Usually, SVMs arrive at a sparser representation, which
can be of advantage; however, their performance relies on
a good setting of the C and g hyperparameters for the SVM
method and the a and g hyperparameters for the KRR method.
Normally, the SVM method leads to faster predictions and
consumes less memory, whereas the KRR method leads to less
tting time for large datasets. Nevertheless, because of the
generally low computational cost of both algorithms, these
differences are rarely signicant for a relatively small number of
data points. Unfortunately, neither method is feasible for large
datasets as the size of the kernel matrix scales quadratically
increases with the number of data points.36

In comparison with other algorithms, random forest
regression (RFR) needs fewer hyperparameters with higher
J. Mater. Chem. A, 2022, 10, 15309–15331 | 15311
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robustness.37 In fact, as shown in Fig. 2b, the RFR algorithm
acts as an aggregated decision tree algorithm to lower the bias
by reaching a collective decision.38 The issue with the RFR is
that it is not accurate for out-of-sample predictions especially in
the case of a small number of training data points.39 Further-
more, feature importance analysis can be easily performed aer
the training of the RFR, SVM, and KRR algorithms.40 Similar to
SVM and KRR methods, the deep neural network (DNN) algo-
rithm has the potential to learn system nonlinearity. As shown
in Fig. 2c, DNN is a mimic of the combination of neurons inside
the human brain, which is composed of several interconnected
neurons in several layers. Similar to SVM and KRRmethods, the
number of neurons and layers as the hyperparameters for DNN
should be optimized concerning the quality and accuracy of the
output results for minimizing the loss functions such as root
mean square error (RMSE), mean square error (MSE), and mean
absolute error (MAE).41–43

Compared with other ML techniques, the SISSO algorithm
possesses high convenience and accuracy, while the tting
formulae generated by the SISSO model possess high efficiency
and portability.44 As shown in Fig. 2d, GPR is a Bayesian
approach to bring waves to the ML area and works well with
a small number of input data to provide uncertainty measure-
ments on the predictions.45

ML techniques can also be applied as the text mining tools to
gather the large numbers of already available QM calculations
and experimental data in the literature, construct readily
available databases applicable in deep analysis, and study
preparation-structure–activity relationships. ML techniques for
text mining can be categorized into supervised, unsupervised,
and semi-supervised techniques.46,47 Supervised and semi-
supervised algorithms such as neural networks and transfer
learning can be used for text classication, information
extraction, and analyzing the data, while unsupervised algo-
rithms such as expectation-maximization (EM) mostly are used
for text clustering, summarization, and dimensionality
reduction.47
3. Inspiration from heterogeneous
catalyst design

Although ML techniques are widely used for the design of
heterogeneous catalysts, their application to single atom cata-
lysts (SACs) is in its infancy. Therefore, in accordance with the
trends in ML-aided heterogeneous catalyst design which are
discussed in this section, we will continue with the ML-aided
design of SACs in section 4. The integration of ML with exper-
imental- and QM-predicted data is widely used along with
atomic and structural properties as the input features to predict
the properties of heterogeneous catalysts.48–52 For example, a ML
algorithm was trained based on experimental data and struc-
tural properties as the input features to optimize the singlet
oxygen (1O2) quantum yields of core–shell plasmonic photo-
catalysts applicable in organic synthesis and photodynamic
therapy (PDT).53 In addition, a ML model was trained based on
DFT calculation data to predict and screen the surface reactivity
15312 | J. Mater. Chem. A, 2022, 10, 15309–15331
of bimetallic alloys using atomic properties as the input
features.54 To shed light on the integration of ML with experi-
ments and QM studies for heterogeneous catalyst design and
discovery, more details are provided in the following
subsections.
3.1 Integration of ML with experiments

Learning from experimental data is the earliest application of
ML in heterogeneous catalyst design for electrocatalysis,
photochemistry, and biocatalysis.55–62 MLmodels can be trained
based on experimental data to optimize the performance,
decrease the number of experiments, and therefore to accel-
erate high-throughput experimentation.63,64 The input features
for ML models can be synthesis and reaction operation condi-
tions to predict the catalytic performance.65 For example, a ML
algorithm was used to calculate the yields of dioctyl adipate
synthesis by implementing the substrate molar ratio, enzyme
amount, temperature, and reaction time as the input features.66

Adaptive learning was applied to nd high-activity AA0B2O6

cubic perovskite catalysts for the OER by establishing a rela-
tionship between the electronic structure properties as the
input features and the OER activity of the perovskite catalysts. It
was revealed that the orbital electronic structure characteristics
of the B-site ion is an important factor for the OER.51 Also
a multi-output support vector regression (SVR) as the ML algo-
rithm was applied to predict the selectivity and conversion of
methane oxidation.67 Likewise, ML allows the optimization of
experimental data to increase the efficiency of heterogeneous
catalysts for the selective oxidation of methane.68 In addition,
ML was applied on experimental data to predict the activity and
selectivity of bimetallic metal catalysts with TM–Pt–Pt(111) and
Pt–TM–Pt(111) architectures for ethanol reforming.69

One of the disadvantages of ML models is that they are only
applicable for specic systems and are not transferable from
one to another experiment due to the lack of consistent data
and the presence of hidden variables for each specic
experiment.70,71

To overcome this issue, ML can be applied to analyze avail-
able data in the literature through data mining processes72,73 to
extract and analyze previously published experimental data for
future heterogeneous catalyst discovery.74–76 For example, ML
was used to extract the data for the synthesis of oxide materials
from 12 000 scientic articles.77 In addition, several studies
have recently reported data mining from the literature for the
ML-assisted design and discovery of new heterogeneous cata-
lysts for oxidative coupling of methane.78–83 Fig. 3 shows the
workow for the summary of a data mining sequence from the
literature. It starts with a query search to nd related papers
from metadatabase, following by downloading and classifying
the papers.46,84 The classied papers can be used for text mining
using several ML algorithms such as KRR, RFR, SVR, Extreme
Gradient Boosting (XGB), extra trees regression (ETR), and
articial neural network (ANN) to extract the data. The extracted
data can be used for regression, classication, and/or clustering
purposes. For example, several ML algorithms such as XGB,
RFR, and ETR were used to analyze the literature data for the
This journal is © The Royal Society of Chemistry 2022
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Fig. 3 The workflow for data mining from the literature. Summary of the data mining sequence from the literature using several ML algorithms
such as KRR, RFR, SVR, XGB, ETR, and ANN.
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oxidative coupling of methane on metal supported catalysts to
discover new heterogeneous catalysts.85,86 Similarly, the statis-
tical analysis of available data in the literature for CO oxidation,
water–gas shi reaction, and oxidative coupling of methane
reactions was performed using several ML algorithms such as
Kernel Ridge Regression (KRR), RFR, XGB, and SVR for
heterogeneous catalyst discovery. Through feature importance
analysis, reaction temperature was revealed as the key param-
eter for the three investigated reactions.87 Very recently, suitable
catalysts for environmental applications were discovered based
on available data in the literature, from which binary and
ternary element catalysts such as MnxCoy and ZrxMnyCrz were
identied and optimized through ML for high NOx conversion.
An ANN algorithm was used to predict NOx conversion effi-
ciency as a function of temperature and the element molar
ratio. The conversion reaches a maximum around 300 �C for the
ternary element catalysts. Also, the loading amount of Zr was
found to play an important role due to the fact that the Cr5+

species can reduce as the Zr loading amount increases, which
can subsequently lower the NOx conversion efficiency.88 In
addition, a ML algorithm along with 27 descriptors was applied
to 2228 experimental data obtained from the literature89 to
predict the activity of heterogeneous catalysts, which reveals
that temperature is the most important descriptor for the
water–gas shi reaction.90

Moreover, learning from a large database in nanoscience can
be used for rapid design and discovery of new heterogeneous
catalysts using ML.91 However, the obtained dataset from the
literature is mostly incomplete and inconsistent, which limits
the application of ML. In order to generate a consistent data-
base for the training of ML algorithms, high-throughput
experimentation can be performed. As a result, high-
throughput experimentation for oxidative coupling of methane
was performed for 20 catalysts and 216 reaction conditions to
produce a consistent dataset for ML to accurately predict C2

yields.92 From feature importance analysis, temperature, in the
This journal is © The Royal Society of Chemistry 2022
range of 700 to 900 �C, is the most important parameter
compared to other parameters such as the ow rate of argon,
ow rate of O2, ow rate of CH4, contact time, and composition
of the catalyst.

ML also has great potential to alter the current form of
conventional experiments and increase the efficient heteroge-
neous catalyst discovery through automation.93–95 In fact, ML-
assisted robots can help to accelerate high-throughput experi-
mentation without human interactions.96–99 As a result, a ML-
guided robot was used to carry out 688 experiments within an
experimental space of ten variables, 1000 times faster than
manual approaches. The ML-assisted high-throughput experi-
mentation revealed a new photocatalyst mixture with six times
more activity.100

3.2 Integration of ML with Quantum Mechanics (QM)

Learning from Quantum Mechanics (QM) is highly desired due
to the existence of enormous amounts of quantitative QM-pre-
dicted data as a training dataset for ML. The trained ML can be
used for accelerated and accurate prediction of the catalytic
properties and adsorption energies of reaction intermediates.101

Using the adsorption energies as the key parameter, the reac-
tion barrier can be predicted, the reaction mechanism can be
investigated, and the desired catalyst can be discovered. For
example, the local similarity kernel and Bayesian linear
regression as the ML algorithms were used for predicting the
adsorption energies of NO, O, and N on a Rh1–xAux alloy, based
on the nanoparticle composition and size.102,103 The ndings
were used to predict the rate of NO decomposition on RhAu
nanoparticles, which indicates a maximum for catalytic activity
at a particle diameter of 2.0 nm. In addition, structure–activity
relationships were established for predicting CO and H
adsorption energies based on structural properties using active
learning across reaction intermediates.104,105 In fact, an auto-
mated screening approach through the integration and opti-
mization of ML was presented to guide DFT calculations for
J. Mater. Chem. A, 2022, 10, 15309–15331 | 15313
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predicting catalytic activity.105 The feasibility of this approach
was demonstrated by screening various alloys combining 31
elements, which resulted in 131 candidate surfaces across 54
alloys being identied for the CO2RR and identication of 258
surfaces across 102 alloys for the HER.104,105 Likewise, active
learning was then used to accelerate the screening of CO
adsorption energy on Cu based components.106

The ML-predicted adsorption energies of reaction interme-
diates were also used for the investigation and optimization of
the reaction network of the syngas reaction (CO + H2) over
Rh(111) catalysts at 573 K and 1 atm. Gaussian process regres-
sion (GPR) as a ML algorithm was trained based on a few DFT
calculations to predict the adsorption energies for all interme-
diates in the reaction network. A probable reaction network
from syngas to acetaldehyde was revealed by using a simple
classier to select the potential rate-limiting steps, where only
predicted potential rate-limiting steps were analyzed via further
DFT calculations.107

ML was also trained based on DFT-calculated data to accel-
erate the prediction of the adsorption energies of H and CHx

intermediates on Cu-based alloys using 12 properties as the
input features. Amongst several ML algorithms, the ETR algo-
rithm resulted in the highest accuracy. Based on feature
importance analysis, the surface energy, element group, and
melting point were identied to be the most important
parameters for predicting adsorption energies.108 In addition,
ML was applied for predicting the adsorption energies of
different intermediates on metal alloys.109 ML was also used to
predict the adsorption energies of H on Ni2P(0001) surfaces.
From the feature engineering perspective, the Ni–Ni bond
length is the key parameter for HER activity, where a higher Ni–
Ni bond length leads to lower HER activity.110 Similarly, ML was
used to predict the adsorption energies of CO on bimetallic
alloys, where feature engineering analysis resulted in the d-
band shape and sp-band lling as key parameters.111,112

Furthermore, to accurately predict the d-band as one of the
most important parameters in CO adsorption, a GBRmodel was
applied to several individual 3d, 4d, and 5d transition metal
structures and their binary alloys for both the cases of metal
impurities and overlayer-covered metal surfaces.113,114 Recently,
ML was integrated with DFT calculations to predict the
adsorption energies of various molecules on metal oxide
surfaces. Feature importance analysis indicates that the highest
occupied molecular orbital (HOMO) of the adsorbates and the
metal oxide surface energy are the most important parameters
for molecular adsorption.115 ML in combination with DFT
calculations was also used for the prediction of the adsorption
energies of 12 elements on 38metal surfaces by using SVR, RFR,
and multi-layer perceptron regression (MLPR).116

The integration of ML and QM can also be performed to
accelerate the discovery and high-throughput screening of
heterogeneous catalysts. For example, ML integrated DFT
calculations were used to accelerate the discovery and high-
throughput screening of 2D MXenes for the HER.117,118 SVR,
GPR, RFR, and AdaBoost were used as ML algorithms to accel-
erate the prediction of DGH*, based on the distance between the
nearest neighbor O atoms as well as the surface oxygen–metal
15314 | J. Mater. Chem. A, 2022, 10, 15309–15331
bond length as the most important parameters.117 Similarly,
several ML models, such as DNN, KRR, SVM, and RFR, were
used to accelerate the high-throughput screening of DGH* by
using several elemental properties as the input features. RFR
led to the highest accuracy, with the lowest RMSE of 0.27 eV for
the test data. Feature importance analysis shows that HER
performance is highly dependent on charge and structural
properties. S- and Os2B-terminated Scn+1Nn (n ¼ 1, 2, 3) were
revealed as appropriate catalysts for the HER with DGH* close to
zero and satisfactory hydrogen coverages. It was also shown that
S functional groups are of great importance in regulating the
HER performance. This is because lling antibonding states
with electrons weakens the adsorption of H*, which is a key step
for the HER.118

For spinel structures, the ML model was used to accurately
calculate the energy difference between the centers of the
oxygen p and metal d bands to identify the better spinel oxide
catalysts for the OER. It was shown that a [Mn]T[Al0.5Mn1.5]O–
O4 spinel catalyst has the optimal energy difference for high
activity, as conrmed by experimental observations.119 ML was
also applied to optimize TiO2-supported Re and zeolite catalysts
for methylation of aromatic hydrocarbons.120 Similarly, ML was
applied on the DFT-calculated data to predict how strain in
platinum core–shell nanocatalysts can improve the ORR
activity. It was revealed that the optimal strain depends on the
nanoparticle size rather than the bimetallic material composi-
tion and shell thickness.121

As with experimental data, there is a large amount of QM-
predicted data in the literature that can be mined for the
purposes of ML analysis to commence a new direction using
a large database in the rational design of heterogeneous catal-
ysis and SACs.122 For example, ML was applied on literature data
for CO2 hydrogenation.123 In addition, a dataset of 37 000
structures from the Catalysis-Hub database,124 containing 11
adsorbates on 2000 metal alloy surfaces, was used for training
a graph neural network (GNN) to predict adsorption energy
based on relaxed structures.125

ML can also be used for investigating reaction mechanisms
and nding active sites for reactions. For instance, the LASSO
ML algorithm was trained on DFT-calculated data for predicting
the methane activation mechanism on rutile metal oxides.126 It
was revealed that the energy of methane activation decreased if
the reacted atoms including O, C, H, and metal atoms could be
placed in the same plane. In addition, ML was combined with
multi-scale simulations and QM to identify the performance of
surface sites on Au nanoparticles as well as dealloyed Au
surfaces for the CO2RR.127 Based on ML results, surface defects
are responsible for the high performance of Au surfaces. Simi-
larly, ML was applied to DFT-calculated data to discover active
bimetallic facets for the CO2RR.128 It was revealed that most
facets of nickel gallium bimetallic materials lead to similar
activity on Ni surfaces.

ML integrated DFT calculations are able to predict the
surface segregation energies of bimetallic catalysts through the
establishment of structure–activity relationships.129 ML was
used for the prediction of reaction barriers on a variety of
surfaces130 and for the discovery of phase diagrams applicable
This journal is © The Royal Society of Chemistry 2022
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in electrochemical reactions.131 In addition, symbolic regression
as a ML technique in combination with QM calculations was
used to accelerate the discovery of new perovskite catalysts with
excellent OER activity. The ratio of octahedral factor to tolerance
factor (m/t) was revealed as a simple and important descriptor
for the discovery of perovskite catalysts.132
4. Single atom catalysts (SACs)

Along with the studies mentioned above on heterogeneous
catalysis, single atom catalysts (SACs) have recently been
applied to several photochemical and electroreduction reac-
tions to produce a wide range of chemicals.133–135 The unique
properties and high atom-utilization efficiency of SACs make
them interesting and promising.136–138 With these increased
applications, the rational design of SACs has come into the
forefront to enable improvements in the efficiency and feasi-
bility of optimizing the desired products.139 DFT calculations
are widely used for the rational design of SACs with efficient
activity, selectivity, and stability. DFT calculations, however, are
time-consuming and computationally expensive140,141 because
the complexity of structure–activity relationships requires per-
forming a large number of non-trivial DFT calculations in
a large parameter space, including the SAC type, environmental
coordination, and reactants.142 On the other hand, ML is
considered as a fast, accurate, inexpensive,143 and supportive
tool144 to predict the properties of SACs towards their rational
design.145–147 As shown in Fig. 3, using ML, one can apply the
available datasets from QM and DFT calculations to construct
readily available databases applicable in the deep analysis and
Fig. 4 ML for the interpretation of the EXAFS of Co–N doped graphene.
4N–P, Co–2N–A, and Co–2N–Z. (b) The architecture of the DNN comp
one output layer of the proportion vector. (c) The estimation of the lo
Reproduced with permission from ref. 145, copyright 2021, Wiley-VCH
interpretation of EXAFS.

This journal is © The Royal Society of Chemistry 2022
establishment of preparation-structure–activity relationships.
The established relationships can be used to predict the
adsorption energy (Eads) or Gibbs free energy (DG) of various
reaction intermediates adsorbed on SACs to discover more
active and selective SACs. Once enough high quality databases
are provided, a reliable ML model can be trained and con-
structed to address the electroreduction challenges.148,149 ML in
combination with DFT calculations commences a new direction
for rapid and low cost rational design of SACs predicted to have
optimal electroreduction catalytic activity.150,151 For example,
several studies have used ML to design single atom alloy cata-
lysts (SAACs) with excellent stability and activity by predicting
the Eads, DG, or aggregation energies.152–155 ML can also be used
for the interpretation of characterization of SACs.156,157 For
example, as shown in Fig. 4, ML techniques have been used to
interpret the EXAFS spectra based on which edge sites (zigzag or
armchair) are responsible for the HER activity of a cobalt SAC
embedded in graphene.145 In the following subsection, the
application of ML for the establishment of structure–activity
relationship, feature engineering, high-throughput screening,
and stability of SACs is broadly discussed. As the application of
SACs in thermal and electrochemical reactions was presented in
a recent review paper,158 we only focus on the progress of ML for
the design of SACs and DACs especially for electrochemical
reactions.
4.1 Structure–activity relationship and feature engineering

ML is a strong tool159 to provide a fundamental understanding
of structural sensitivity160,161 through establishing deep rela-
tionships between catalytic activity and structural as well as
(a) Establishment of training data using MD-EXAFS calculations for Co–
osed of one input layer of the EXAFS spectrum, two hidden layers, and
cal structural proportion from the experimental EXAFS measurement.
. Results show that ML is an appropriate and powerful tool for the
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atomic properties based on mechanisms and similarities in
SACs.13,32,162 ML is considered as a new direction for the rational
design of SACs by exploring feature importance analysis for
electroreduction reactions to introduce more perceptions on
the origin of the activity and stability of SACs.163–165 For example,
ML integrated DFT was applied to establish a relationship
between various descriptors and hydrogen adsorption free
energy (DGH*) for the HER by altering the size and dimension-
ality of a nitrogen-doped 2D-carbon substrate for 3d, 4d, and 5d
transition metals (TMs) as SACs.166 The sure independent
screening and sparsifying operator (SISSO) as the supervised
ML algorithm was applied with 10 input features including the
d-state center (3d), covalent radius (rcov), Bader charge (q),
number of occupied d states (docc), Zunger radius (rd), number
of valence electrons (Ne), ionization energy (IE), electronega-
tivity (EN), and formation energy of single atom sites (Ef). Our
evaluation on this work using the SVM algorithm is shown in
Fig. 6a, demonstrating that the number of occupied d states
(docc) and Bader charge (q) are the most important parameters
for the HER. Using the SISSO algorithm, the following general
descriptor for HER activity containing four properties was ob-
tained, in which EN is the electronegativity of the SACs:

DGH ¼ �1:032
�
3d

q

�
þ 13:424

�
1

rcov

�
þ 1:726ð3d � ENÞ

� 0:045d2
occ � 9:241 (2)

Similarly, several atomic properties were implemented as
input features to establish structure–activity relationships and
predict the OER overpotential of SACs on carbon substrates.
The full connection neural network (FCNN) ML algorithm
trained using DFT-calculated data leads to an accurate predic-
tion of overpotentials with a relative error of 6.49% and
a 130 000 times reduction in the computational time. It was
revealed that the d-electron count (de), the atomic radius of
metal (AtR), and electron affinity (EA) are the most important
parameters for OER overpotential. Moreover, an intrinsic
descriptor (f) that denes the overpotential of SACs based on
Fig. 5 Density functional theory (DFT)-based machine learning (ML). Co
reproduced with permission from ref. 173, copyright 2019, American Ch
duced with permission from ref. 174, copyright 2020, Royal Society o
permission from ref. 171, copyright 2021, American Chemical Society. R
predictions of activity for SACs using deep structure–activity relationsh
sufficient to give a generalized ML algorithm.

15316 | J. Mater. Chem. A, 2022, 10, 15309–15331
their intrinsic atomic properties was proposed using ML and
DFT:167

f ¼ IE1deAtM

�
ENM

AtRM

þ NCENC

AtRC

�
(3)

where ENC, AtRC, and NC are the electronegativity of carbon, the
atomic radius of carbon, and the nearest neighbor carbon
atoms, respectively. ENM, IE1, and AtM are the electronegativity
of metal, rst ionization energy, and atomic mass,
respectively.

In another study, atomic properties such as electronegativity,
electron affinity, and radii of the metal atoms were considered
as input features to reveal ORR activity for heterobimetallic
SACs. Using RFR, the origin of the ORR activity of SACs was
investigated experimentally or by establishing structure–activity
relationships based on DFT-calculated data.168 Similarly, atomic
properties were used to predict the catalytic activity of SACs and
bi-atom catalysts for the CO2RR. Based on results from the GBR
algorithm, Ag–MoPc was revealed as an excellent electrocatalyst
with a limiting potential of �0.33 V.169 Subsequently, the data
from the abovementioned work were used as an example to
evaluate the efficiency of a DFT–ML hybrid program for catalysis
programming.170

In order to observe the effect of substrates on the activity and
stability of SACs, the combination of atomic and structural
properties should be considered as input features for the
training of ML algorithms. Therefore, several atomic as well as
structural properties were used to establish structure–activity
relationships for the discovery and design of bifunctional
rhodium SACs on defective g-C3N4 for the OER and ORR using
the GBR algorithm.171 The atomic and structural properties
include the TM bond length and coordination atoms (dTM–N1,
dTM–C1, and dTM–C2), the d-band center (3d), the charge
transfer of TM atoms (Qe), the electronegativity (EN), the elec-
tron affinity (EA), the rst ionization energy (IE1), the radius of
the TM atom (AtR), and the number of TM-d electrons (de). As
shown in Fig. 5c, the GBR model predicts DG*OH with an R2 ¼
0.99 and a low RMSE ¼ 0.03 eV. However, this work included
mparison of ML- and DFT-predicted (a) DGO* using the RFR algorithm,
emical Society. (b) Limiting potentials using the RFR algorithm, repro-
f Chemistry. (c) DGOH* using the GBR algorithm. Reproduced with
esults indicate that ML can be used for the out-of-sample (test set)

ips. However, the quantity of data points in the training dataset is not

This journal is © The Royal Society of Chemistry 2022
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Fig. 6 Feature importance analysis. (a) The feature importance for SACs embedded in nitrogen-doped graphene indicating that the number of
occupied d states (docc) and Bader charge (q) are the most important parameters for the HER. Please note that this is our evaluation on ref. 166.
Reproduced with permission from ref. 166, copyright 2020, American Chemical Society. (b) The feature importance based on the GBR algorithm
for rhodium SACs. Reproduced with permission from ref. 171, copyright 2021, American Chemical Society. First ionization energy (IE1) and the
charge transfer of TM atoms (Qe) are the most important factors for DGOH*. Inset shows the structure of rhodium SACs on defective g-C3N4 for
the OER andORR. (c) The feature importance based on the RFR algorithm for SACs embedded on nitrogen-doped carbon supports. Reproduced
with permission from ref. 173, copyright 2019, American Chemical Society. The oxide formation enthalpy (Hf,ox) and the adjusted electron
numbers of d/p orbitals (dpe) are the most important factors for DGO*. Inset shows the structure of SACs embedded on nitrogen-doped carbon
supports for a two-electron ORR. (d) The feature importance for dual atom catalysts (DACs) based on a RFR algorithm indicating that the average
distance between metal atoms and the coordinated N atoms (M12–N), the distance between the two metal atoms (M1–M2), and the outer
electron number of metal atoms (de) are the most important factors for the ORR limiting potentials. Reproduced with permission from ref. 174,
copyright 2020, Royal Society of Chemistry. Inset shows the structure of DACs embedded in nitrogen-doped graphene for the ORR. Results
indicate that feature engineering of SACs and DACs depends on the application and the type of substrate. Please see Table 2 for the
abbreviations.
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only 16 points of input data, which is insufficient. Feature
importance analysis revealed that the rst ionization energy
(IE1) and the charge transfer of transition metal atoms (Qe) are
the key features (Fig. 6b). The most important descriptor IE1,
the energy needed to remove one or more electrons from
a neutral atom to form a positively charged ion (which increases
from le to right in each period), affects the OER and ORR
activities.

Similarly, atomic and structural properties including the
number of electrons in d orbitals, the oxide formation enthalpy,
the Pauling electronegativity of the metal atom, the sum of
Pauling electronegativity of surrounding atoms, and the average
pKa values of the surrounding atoms were used to establish
structure–activity relationships. To do this, the RFR algorithm
was applied based on DFT-calculated data for 104 SACs
embedded in graphene including M@C3, M@C4, M@pyridine-
N4, and M@pyrrole-N4. The RFR algorithm revealed that the
number of electrons in d orbitals is the most important
This journal is © The Royal Society of Chemistry 2022
parameter for the ORR, OER, and HER. The trained RFR algo-
rithm was employed to predict the activity of 260 graphene-
based SACs (M@NxCy), through which, it was revealed that
Fe@pyrrole-N1C3 and Fe@pyrrole-N2C2 were more active than
Fe@pyridine-N1C3 and Fe@pyridine-N2C2.172

Comparably, 8 atomic and structural properties including
the oxide formation enthalpy (Hf,ox), the number of electrons in
d/p orbitals (dpe), electron affinity (EA), electronegativity (EN),
number of coordinated N atoms (NN), rst ionization energy
(IE1) of the central atoms, the sum of the electronegativity of
neighboring C and N atoms (SEN), and the distance ratio (DR)
were used to establish the structure–activity relationship for
a two electron ORR using RFR. Fig. 5a shows the comparison of
ML- and DFT-predicted DGO* for this system. Through the
feature importance analysis of 8 intrinsic features, it was
revealed that the oxide formation enthalpy (Hf,ox) and the
number of electrons in d/p orbitals (dpe) are the most important
parameters for determining the DGO* of SACs (Fig. 6c).173 The
J. Mater. Chem. A, 2022, 10, 15309–15331 | 15317
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feature importance analysis implies that metals like Ag, Au, and
Pd with a weaker affinity for oxygen can remarkably decrease
band hybridization between the oxygen and metal, leading to
enhanced H2O2 selectivity.

As the complexity of SAC structures increases, new and
general descriptors will be needed for establishing the correct
structure–activity relationships. For example, the number of
isolated electrons in d-orbitals, obtained from a bidirectional
activation mechanism, was suggested as a new input feature for
the ML algorithm, which introduces new insights for the
rational design of SACs. It was shown that this new descriptor is
the most important parameter for the NRR, while the electron
affinity of metal atoms was shown to be the most important
parameter for the HER. ML using this new input features was
therefore used to accelerate the computational screening,
design, and discovery of SACs by establishing the structure–
activity relationship for 126 SACs for the NRR, validated by
experimental studies and DFT calculations.31

Unlike SACs, the geometry of dual atom catalysts (DACs) is
more complex and the synergetic effect between the two metal
atoms plays an important role in the performance. In other
words, the linear relationships for DACs are signicantly
weakened, demonstrating that the DACs' activity requires new
descriptors to consider the effects of both metals in the struc-
ture. Therefore, in order to consider the synergetic effect of the
two metals, ML integrated DFT was used to identify the struc-
ture–activity relationship of DACs embedded on nitrogen-doped
graphene for the ORR. Fig. 5b shows theML- and DFT-predicted
limiting potentials using the random forest regression (RFR)
model.174 Feature importance analysis indicates that the average
distance between metal and N atoms (M12–N), the distance
between metal atoms (M1–M2), and the outer electron number
of metal atoms (Ne,O) are the most important factors for the
ORR limiting potentials (Fig. 6d).

In order to shed more light on the structure–activity rela-
tionships, the effect of different intermediates should also be
considered on the activity of SACs. Therefore, in addition to
atomic and structural properties, the properties of intermedi-
ates were also considered as input features for training the RFR
algorithm to calculate the binding energies of H*, OH*, O*, and
OOH* on SACs embedded in nitrogen-doped graphene using
1700 DFT-calculated data points. Based on feature importance
analysis, the type of intermediate was found to be one of the
most important features.175

The input features with high feature importance can be used
for descriptor-based SAC design to predict adsorption energies.
For example, descriptor-based design was used to predict the
adsorption energies of intermediates on SACs embedded in
graphitic carbon nitride (g-C3N4), g-CN, and g-C2N. It was shown
that Ni@g-CN, Cu@g-CN, and Co@C2N are excellent SACs for
the CO2RR.176 It was also shown that catalytic activities are
highly related to DGOH*, DGOCH*, the number of electrons in
d orbitals, and the TM enthalpy of vaporization.

The descriptors can also be used for establishing volcano-
shaped relationships177 from which SAC candidates for various
electrocatalytic reactions can be found.178 Therefore, a new
intrinsic descriptor based on the bonding, topology, and
15318 | J. Mater. Chem. A, 2022, 10, 15309–15331
electronic structure of SACs embedded in carbon supports,
shown in Fig. 7a, was dened as follows:179

f ¼ NeEN

IR
(4)

in which Ne, EN, and IR are the valence electron number,
electronegativity, and ionic radius of central metals, respec-
tively. This descriptor was used for volcano plots of over-
potential, onset potential, and Faraday efficiency, as shown in
Fig. 7b–d, indicating two denitive volcanoes in the plot for
overpotential with Ti and Co located at the summits. Another
descriptor to consider the effect of supports was also introduced
as follows:139

f ¼ de

ENM þ aðNNENN þNCENCÞ
ENO=H

(5)

in which ENN, ENC, NN, NC, and de represent the electro-
negativity of N atoms, the electronegativity of C atoms, the
number of nearest-neighbor N atoms, the number of nearest-
neighbor C atoms, and valence electrons in d orbitals, where
a is the correction coefficient. These descriptors were used to
predict the adsorption energies of different intermediates for
the CO2RR. Moreover, these descriptors were used for volcano
plots of onset potential and overpotential with Ni and Pt located
at the summits of volcano plots.

However universal and appropriate descriptors are still
insufficient to establish structure–activity relationships for all
types of SACs, supports, and electroreduction reactions.180

Therefore, a large number of DFT calculations and ML analyses
are still needed to screen different descriptors for each reaction
system.181
4.2 High throughput computational screening for SACs

DFT calculations have been applied for high-throughput
screening of SACs,96,182–186 where, for example, S was found to be
the best dopant in graphene-based Co SACs for the HER.187 ML,
however, can accelerate the screening of SACs and decrease the
computational cost and time by screening for similarities in
SACs and establishing deep structure–activity relation-
ships.146,188–190 Therefore, the integration of ML algorithms and
DFT calculations has been performed for the rapid and high-
throughput screening of SACs.191 For example, ML combined
DFT calculations were employed to screen and design MBene-
based SACs for the HER. DGH* values were calculated accurately
via SVM algorithm by using atomic and structural features. The
Bader charge transfer of the surface metal was revealed as the
most important parameter for HER activity. Stable Co2B2 and
Mn/Co2B2 were also identied as the efficient HER catalysts
because jDGH*j < 0.15 eV.192 In addition, the screening of SACs
embedded on MXenes was performed using ML and DFT
calculations to show the ability of ML to screen new candidates
with excellent performance.193 It shows that the HER catalytic
activity is dependent on the synergistic effect between single
metal atoms and substrates. In addition, the bag-tree algorithm
This journal is © The Royal Society of Chemistry 2022
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Fig. 7 Volcano plots. (a) Structure of SACs embedded in nitrogen-doped graphene supports for the descriptor-based SAC design. Volcano plots
for (b) overpotential (h), (c) onset potential (Vonset), and (d) Faraday efficiency (FE) based on the descriptor for SACs embedded in nitrogen-doped
graphene supports. This indicates two definitive volcanoes in the plot for overpotential with Ti and Co located at the summits. Also, for the onset
potential and Faraday efficiency, Co is in the summit of volcanoes with better CO2RR performance. Reproduced with permission from ref. 179,
copyright 2019, Wiley-VCH.
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as a supervised ML technique was applied for the separation of
DFT-calculated data and converse prediction of HER perfor-
mance.194 ML integrated DFT calculations were applied to
accelerate the discovery and screening of TMs and lanthanide
(Ln) metals for SACs embedded in graphdiyne, based on the
adsorption energies, adsorption trend, electronic structures,
reaction pathway, and active sites.

In addition to the HER, ML algorithms were employed based
on DFT-calculated data for the fast screening of efficient NRR
and CO2RR electrocatalysts.105 For instance, graph-based con-
volutional neural network (GCNN) was applied for the acceler-
ated screening of SACs for the NRR. The results show superior
NRR selectivity over the HER with overpotentials of 0.44 V, 0.40
V, 0.24 V, 0.60 V, 0.17 V, 0.17 V, 0.64 V, 0.37 V and 0.58 V,
respectively, for SACs embedded in MBenes, defect-engineered
2D-materials, and 2D p-conjugated polymers, TaB, NbTe2, NbB,
HfTe2, MoB, MnB, HfSe2, TaSe2 and Nb.195 A deep neural
network (DNN) was used for rapid and high throughput
screening of efficient SACs embedded on boron-doped gra-
phene for the NRR. The adsorption and free energies were
calculated using the light gradient boosting machine (LGBM)
model based on the bonding characteristics and structural
This journal is © The Royal Society of Chemistry 2022
properties as input features. Feature importance analysis was
also performed for nitrogen xation, revealing that the TM
coordination number and the number of hydrogen atoms are
the key parameters.196 Extreme gradient boosting regression
(XGBR) was implemented as a supervised ML algorithm to
screen DGCO* and DGH* for 1060 SACs embedded in metal–
nonmetal co-doped graphene using simple features for the
CO2RR.197 Based on feature importance analysis, the Pauling
electronegativity (E_M), covalent radius (M_cov), and rst
ionization energy of metal atoms (1E_M) are the most impor-
tant parameters on DGCO*.
4.3 Stability of SACs

SAC's stability is the prerequisite for constructing high-activity
SACs, which should be considered by studying metal–support
interactions, aggregation energies, and adsorbate-induced
structural changes.198–201 In other words, constructing a strong
coordination environment for achieving SACs with strong
metal–support interactions is highly desirable and can be ach-
ieved by increasing either the anchoring capability of supports
or the number of anchor sites.202 The former can be performed
by optimizing the coordination environment and the
J. Mater. Chem. A, 2022, 10, 15309–15331 | 15319

https://doi.org/10.1039/d2ta02039d


Journal of Materials Chemistry A Review

Pu
bl

is
he

d 
on

 1
4 

ju
in

 2
02

2.
 D

ow
nl

oa
de

d 
on

 2
02

5-
01

-2
4 

10
:3

2:
17

. 
View Article Online
coordination atoms. The latter can be achieved by introducing
intrinsic defects and structural engineering through controlling
its size and morphology.

In this regard, ML can be applied as a new guideline to
efficiently synthesize highly-loaded-yet-stable SACs with strong
metal–support interactions.36,203 For example, ML integrated
DFT calculations were employed to correlate the stability of
SACs embedded on oxide supports with the binding energy
(Ebind) and cohesive energy of the bulk metal (Ec). Assisted by
ML methods, it was found that the diffusion activation barrier
(Ea) correlates with Ebind

2/Ec in the physical descriptor space,204

while Ebind was previously explored to be correlated with Ec.205

Designed SACs should be thermodynamically stable with the
lowest energy state. Therefore, thermodynamic stability and
optimal combination of dual atomic catalysts embedded in
graphdiyne were also investigated by using d-band center
modications and formation stability. Using Gaussian process
regression (GPR) as the ML algorithm with seven input features,
the potential f–d orbital coupling was found as the most
important factor in tuning the d-band center with high
stability.33 Based on these results, the combination of lantha-
nide metals and transition metals leads to appropriate stability
and activity. The thermodynamic stability of SAACs was also
investigated in terms of aggregation energies and adsorbate
(O*)-caused changes in the structure by using ML algorithms
trained with DFT-calculated data for 38 different SAACs on a Cu
support. A GPR model was applied on the aggregation energy
and O* adsorption energies with a MAE of 0.092 and 0.091 eV,
respectively. Moreover, the GPR model is extendable to other
substrates, adsorbates, and larger cluster sizes to address the
large number of degrees of freedom and decrease the calcula-
tion time.206

The zero-valence stability and electron transfer ability of
SACs should also be investigated for the stability by considering
the redox process between transition metals and a graphdiyne
support using ML and DFT. It was indicated that amongst
transition metals, Co, Pd, and Pt show high stability of zero-
valence SACs based on the difference of energy barriers between
gaining and losing electrons.207 Fuzzy C-Means (FCM) as an
unsupervised ML algorithm was used for the separation of DFT-
calculated data. The developed ML algorithm has been also
applied to create a database capable of screening out SACs
embedded in graphdiyne.207 The different number and direc-
tions of electron transfer between the transition metals and
graphdiyne were also analyzed, nding that the initial one-
electron transfer is the most difficult one.

Very recently, the stability of the SAAC conguration based
on a ML based approach was examined to investigate the
tendency of the promoter atom to diffuse into the bulk material,
form surface clusters, or avoid alloying with the host.208 Deci-
sion trees, neural networks (NN), and SVM with atomic prop-
erties as the input feature were used to analyze DFT-calculated
data. Then, a physical bond counting model was combined with
a KRR algorithm to expand the domain where the model is
useful.

The stability and activity of SACs embedded in NxCy

(TM@NxCy) were screened and explored in terms of the
15320 | J. Mater. Chem. A, 2022, 10, 15309–15331
structure, coordination, formation energy, structural and elec-
trochemical stability, electronic properties, electrical conduc-
tivity, and reaction mechanism for the HER, OER, and ORR
using DFT- and ML-based descriptors.209 Among various
TM@NxCy SACs, TM@N2C2 shows higher electrochemical
catalytic performance, tends to be more easily formed, and
possesses longer durability without aggregation or dissolution.
In the TM@N2C2 templates, Ni/Ru/Rh/Pt show low HER over-
potentials. The ML-based descriptors indicate superior HER,
OER, and ORR performances of TM@N2C2 compared to those of
benchmark noble metal catalysts. It was shown for the rst time
that both TM and carbon atoms participates in H adsorption.

Table 1 shows the summary of applied ML algorithms and
their applications in SAC designing through input feature
engineering and feature importance analysis. The list of
abbreviations for Table 1 is presented in Table 2. As shown in
Table 1, SVM, KRR, RFR, and DNN are mostly used as the
supervised ML algorithms for the design of SACs to describe the
relationship between the input features and SAC activity. All the
mentioned algorithms are normally applied in Scikit-learn.210

Atomic properties are mainly used as the input features for the
design of SACs from which the number of electrons in the
d orbital and enthalpy of vaporization are usually the most
important input features for ML algorithms. However, the
application of ML is limited by the lack of not only a large and
high-quality database but also a generalized ML algorithm for
further studies in this eld.

Moreover, based on Table 1, the d-band center, enthalpy of
vaporization, Bader charge, ionization energy, electron affinity,
covalent radius, the electron numbers in the d orbital, forma-
tion energy, oxide formation enthalpy, etc. mainly are used as
the key descriptors to describe the catalytic activity of SACs.
Still, one of the main hurdles for employing ML in heteroge-
neous catalyst design is the lack of appropriate descriptors as
input features for ML. An appropriate descriptor needs to
simultaneously possess: (1) physical interpretation, (2) high
simplicity, and (3) relatively high feature importance. To some
extent, the black-box nature of ML techniques occasionally
makes a physical interpretation of descriptors, such as the d-
band center and enthalpy of vaporization, non-trivial. In
particular, the d-band center is widely adopted as an efficient
descriptor,211 typically with high feature importance to describe
the reactivity of SACs. However, the d levels of atomically
dispersed metal atoms on a graphene substrate may not form
a band that makes evaluating the position of the d-band center
impossible. Therefore, frontier molecular orbitals and the
density of states (DOS) seem more appropriate descriptors than
the d-band center.212 However, obtaining the frontier molecular
orbital and DOS requires time-consuming DFT calculations,
making this descriptor not worthwhile. In fact, the simplicity of
descriptors requires using metal atom and substrate properties,
being readily obtained without needing time-consuming DFT
calculations. In contrast to Bader charge and DOS, descriptors
such as the atomic number, number of electrons in d orbital,
ionization energy, and coordination number of metal atoms
possess simplicity requirements.
This journal is © The Royal Society of Chemistry 2022

https://doi.org/10.1039/d2ta02039d


T
ab

le
1

Su
m
m
ar
y
o
f
M
L
al
g
o
ri
th
m
s
an

d
th
e
ir
ap

p
lic

at
io
n
s
in

SA
C
s'
d
e
si
g
n
.L

is
t
o
f
ab

b
re
vi
at
io
n
s
is
p
re
se
n
te
d
in

T
ab

le
2

#
Su

pp
or
t/
su

bs
tr
at
e

M
L
al
go

ri
th
m
s

R
ea
ct
io
n

Pu
rp
os
e

In
pu

t
fe
at
ur
es

M
os
t
im

po
rt
an

t
fe
at
ur
es

Y
ea
r
R
ef
.

1
C
eO

2
,T

iO
2
,M

gO
,Z

n
O
,S

eT
iO

3
,

M
oS

2
,a

n
d
gr
ap

h
en

e
LA

SS
O
,e

la
st
ic

n
et
,r
id
ge

—
St
ab

il
it
y

E c
,E

c�
1
,E

c0
.5
,E

c�
0
.5
,E

c2
,E

c�
2 ,

ln
(E

c)
,E

b
,E

b
�
1
,E

b
0
.5
,E

b
�
0
.5
,E

b
2
,

E b
�
2
,l
n
(E

b
),
E b

2
/E

c

(E
b
)2
/E

c
20

20
20

4

2
G
ra
ph

d
iy
n
e
(b
i-a

to
m

ca
ta
ly
st
s)

G
PR

—
O
pt
im

al
co
m
bi
n
at
io
n
of

m
et
al
s

fo
r
h
ig
h
st
ab

il
it
y

—
Po

te
n
ti
al

f–
d
or
bi
ta
lc

ou
pl
in
g
20

21
33

3
G
ra
ph

d
iy
n
e

FC
M

—
C
lu
st
er
in
g
th
e
da

ta
E
A
,E

N
,Q

e,
3 d
,e

tc
.

—
20

19
20

7
4

C
u,

R
u,

R
h
,P

d
,A

g,
R
e,
O
s,
Ir
,P

t,
an

d
A
u

G
K
R
,S

V
M
,G

PR
—

A
gg

re
ga

ti
on

en
er
gy

an
d
D
G
O
*

A
t N
,A

t w
t,
A
t P

N
,A

t G
N
,A

t R
,E

N
,I
E
,

E
A
,B

0
1
,O
*
,e

tc
.

A
t R
,E

N
,a

n
d
A
t G

N
20

20
20

6

5
T
ra
n
si
ti
on

m
et
al
s

D
T
,S

V
M
,N

N
,h

yb
ri
d
K
R
R

—
St
ab

il
it
y

A
t N
,A

t w
t,
A
t G

N
,A

t R
,r

co
v,
P E

N
,I
E
1
,

E f
,d

e,
et
c.

—
20

20
20

8

6
N
xC

y
G
N
B
,L

R
,K

N
N
,r
ad

iu
s
n
ei
gh

bo
r

cl
as
si

er
,s

up
po

rt
ve
ct
or

cl
as
si

er
,N

N
,D

T
,R

FR
,E

T
R
,

an
d
G
B
R

H
E
R
,O

E
R
,a

n
d

O
R
R

St
ab

il
it
y
an

d
ac
ti
vi
ty

A
t N
,I
E
1
,e

tc
.

—
20

21
20

9

7
G
ra
ph

en
e

K
R
R
,R

FR
,N

N
,S

IS
SO

H
E
R

D
G
H
*

3 d
,r

co
v,
q,

d
u
n
o
cc
,d

o
cc
,N

,r
d
,E

f,
IE
,E

N
d
o
cc
an

d
q

20
20

16
6

8
G
ra
ph

en
e
(d
ua

l
at
om

ca
ta
ly
st
s)

R
FR

O
R
R

U
L

M
1–
M

2
,M

1
2–
N
,A

t R
,N

e,
O
,P

E
N
,

IE
1
,E

A
of

tw
o
m
et
al
s

M
1
2–
N
,M

1
–M

2,
an

d
N
e,
O

20
20

17
4

9
C
ar
bo

n
FC

N
N

O
E
R

h
A
t R
,d

e,
E
N
,E

A
,a

n
d
IE

1
d
e,
A
t R
,a

n
d
E
A

20
21

16
7

10
g-
C
3
N
4

G
B
R

O
E
R
an

d
O
R
R

D
G
O
H
*

3 d
,Q

e,
E
N
,E

A
,I
E
1,
A
t R
,a

n
d
d
e,

et
c.

IE
1
an

d
Q
e

20
21

17
1

11
G
ra
ph

en
e

R
FR

H
E
R
,O

R
R
,O

E
R

U
L

d
e,
H
f,
o
x,
P E

N
,t
h
e
su

m
of

P E
N
,e
tc
.
d
e

20
20

17
2

12
2D

m
at
er
ia
ls

LS
B
oo

st
H
E
R
an

d
N
2
R
R

D
G

E
N
,E

A
,I
E
,a

n
d
d
is
o
,e
,e

tc
.

d
is
o
,e
fo
r
N
R
R
an

d
E
A
fo
r
th
e

H
E
R

20
21

31

13
G
ra
ph

en
e

R
FR

an
d
SV

M
—

D
G
H
*
,D

G
O
H
*
,D

G
O
*
,a
n
d
D
G
O
O
H
*
—

A
ds

or
ba

te
ty
pe

20
20

17
5

14
2D

m
at
er
ia
ls

R
FR

O
R
R

D
G
O
*

H
f,
o
x,
dp

e,
E
N
,E

A
,I
E
1
,N

N
,S

E
N
,

et
c.

H
f,
o
x
an

d
dp

e
20

19
17

3

15
G
ra
ph

en
e

N
N

H
E
R

E
X
A
FS

sp
ec
tr
a

E
xp

er
im

en
ta
l
E
X
A
FS

sp
ec
tr
um

—
20

21
14

5
16

g-
C
3
N
4,
C
N
,a

n
d
C
2N

E
T
R
m
et
h
od

C
O
2
R
R

D
G
O
H
*
an

d
D
G
O
C
H
*

A
t N
,d

e,
A
t R
,E

N
,H

va
p
,I
E
,a

n
d
E
A
d
e
an

d
H
va
p

20
20

17
6

17
T
ra
n
si
ti
on

m
et
al
s

SV
M
,K

R
R
,G

B
R
,G

PR
,D

T
R
,E

T
R
,

R
FR

,A
B
R
,M

LP
R
,K

N
R

C
O
2
R
R

D
G
C
O
*
,D

G
C
H
O
*
,D

G
C
O
O
H
*
,

D
G
H
C
O
O
*
,a

n
d
D
G
C
O
H
*

E
N
,N

e,
an

d
ra
ti
o
of

E
N

an
d
N
e

R
at
io

of
E
N

an
d
N
e

20
20

19
1

18
A
u(
11

1)
R
FR

N
2
R
R

D
G
N

2*
A
t R
,E

N
,E

A
,A

t G
N
,d

e
A
t G

N
20

21
16

5
19

M
B
en

es
SV

M
H
E
R

D
G
H
*

Q
,A

t R
of

C
,N

,a
n
d
B
el
em

en
ts
,

m
ol
ar

ra
ti
o,

A
t R
,a

n
d
E
A
of

m
et
al

q
20

20
19

2

20
M
X
en

es
SV

M
,R

FR
,A

N
N
,L

A
SS

O
,K

N
N
,

B
ay
es
ia
n

H
E
R

D
G
H
*
an

d
E

—
M
ol
ar

vo
lu
m
e
of

th
e
su

rf
ac
e

el
em

en
t

20
21

19
3

21
M
B
en

es
an

d
2D

-m
at
er
ia
ls

LG
B
M

N
2
R
R

D
G
N

2*
—

N
–N

bo
n
d
le
n
gt
h

20
21

19
5

22
G
ra
ph

en
e

E
xt
re
m
e
G
B
R

C
O
2
R
R
an

d
H
E
R

D
G
C
O
*

—
—

20
20

19
7

23
G
ra
ph

d
iy
n
e

B
ag

-t
re
e
al
go

ri
th
m

H
E
R

D
G
H
*

—
—

20
20

19
4

24
G
ra
ph

d
iy
n
e

D
N
N

an
d
LG

B
M

N
2
R
R
an

d
H
E
R

D
G

E
N
,A

t N
,A

t R
,N

N
,C

N
,e

tc
.

C
N

20
20

19
6

25
C
2
N
,C

1
N
1
,a

n
d
C
1
S 1

R
FR

O
R
R
an

d
O
E
R

D
G
O
*

A
t N
,A

t R
,N

e,
O
,E

N
,I
E
1
,E

A
,S

E
N
,

H
f,
o
x

H
f,
o
x
an

d
N
e,
O

20
21

16
4

26
C
u

G
B
R
,S

V
M
,R

FR
C
O
2
R
R

D
G
C
O
*

—
N
e

20
21

25
2

This journal is © The Royal Society of Chemistry 2022 J. Mater. Chem. A, 2022, 10, 15309–15331 | 15321

Review Journal of Materials Chemistry A

Pu
bl

is
he

d 
on

 1
4 

ju
in

 2
02

2.
 D

ow
nl

oa
de

d 
on

 2
02

5-
01

-2
4 

10
:3

2:
17

. 
View Article Online

https://doi.org/10.1039/d2ta02039d


Table 2 List of abbreviations for Table 1

Abbreviation Explanation

GPR Gaussian process regression
GKR Gaussian kernel regression
GNB Gaussian naive bayes
SVM Support vector machine
LASSO Least absolute shrinkage and selection operator
SISSO Sure independence screening and sparsifying operator
FCM Fuzzy C-means
GBR Gradient boosting regression
LGBM Light gradient boosting machine
LR Logistic regression
KRR Kernel ridge regression
RFR Random forest regression
ERT Extremely randomized trees
NN Neural network
FCNN Full connection neural network
DNN Deep neural network
ANN Articial neural network
KNN k-nearest neighbors
LSBoost Least-squares boosting
DT Decision tree
DTR Decision tree regression
ETR Extra tree regression
ABR Adaptive boost regression
TPOT Tree-based pipeline optimization tool
MLPR Multilayer perceptron regression
KNR k-neighbor regression
SAC Single atom catalyst
SAAC Single atom alloy catalyst
Ec, Eb Cohesive energy of bulk metals, binding energy
AtN, Atwt, AtR Atomic number, atomic weight, atomic radius
AtPN, AtGN Period number, group number
EN Electronegativity
PEN Pauling electronegativity
SEN Sum of the electronegativity of coordinated atoms such as

N and C
IE, IE1 Ionization energy, rst ionization energy
EA Electron affinity
3d d-states' center
rcov Covalent radius
rd Zunger radius
Ne,O Outer electron number
docc,e Number of occupied d states
de The electron numbers of d orbitals
diso,e Isolated electrons in d orbitals
dpe Adjusted electron numbers of d/p orbitals
Ne Number of valance electrons
Ef Formation energy of a single atom site
Hf,ox Oxide formation enthalpy
HVap Enthalpy of vaporization
Q, Qe Bader charge, charge transfer of metal atoms
CN Coordination number
NN Number of coordinated N atoms
M1–M2 The distance between the two metal atoms
M12–N The average distance between the two metal atoms and

the coordinated N atoms
h Overpotential
DG Gibbs free energies
E Adsorption energies
UL Limiting potential
Vonset Onset potential
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5. Summary and future prospects

Recently ML has gained much interest for rational deign of
heterogeneous catalysts due to its potential for robust and fast
prediction of catalyst properties by establishing structure–
activity relationships. High throughput screening and feature
importance analysis can be achieved through deep structure–
activity establishment. However, ML is still at an early stage for
the design of heterogeneous catalysts. In this review, high
throughput screening and feature importance analysis using
ML are provided as the guidelines for heterogeneous catalyst
screening and discovery. Although much research has been
carried out on the application of ML to improve the activity and
stability of heterogeneous catalysts and SACs, there are still
challenges to be resolved, requiring additional studies as
follows:

(1) There remains room for ML to investigate the catalytic
performances and stability,213–216 and improve calculated
parameters for stable SACs.217,218 In addition, the ML technique
can help to investigate the hybridization of SACs,219 atomic
interface effect,220 and aggregation energy.206 Moreover, SACs
face challenges such as low metal loading, low selectivity and
activity, and the lack of catalytic mechanisms.136 Therefore ML
can help the community to understand the reaction pathways
and the catalytic mechanisms221–225 to improve the selectivity
and activity of highly loaded SACs on graphene supports.226–229

In addition, there is a clear need for ML to consider environ-
mental effects, interfacial engineering, SAC coverage, and the
potential for agglomeration. ML can be used for the synthesis of
highly loaded SACs, multi-metal SACs, and multi-atom cata-
lysts.230,231 In other words, since the structure–activity relation-
ships for nanoclusters and DACs are much more complicated
than those of SACs,232 it will be useful to apply ML for predicting
adsorption energies for them using new descriptors to consider
the synergetic effect of several metals.233

(2) ML techniques continue to improve for studying
adsorption energies, overpotentials, and metal–support inter-
actions for various SACs, but the eld of predictive SAC
synthesis to guide experiments is much needed. Because SACs
face tedious preparation processes,8,234,235 ML can accelerate
high-throughput experimentation for the synthesis and char-
acterization of SACs.190,236–241 ML can also be applied to predict
Faraday efficiency and onset potentials to help understand the
volcano plots.

(3) A major hurdle for developing ML-aided heterogeneous
catalyst design is the lack of sufficient and consistent datasets,
data scarcity, bias, and noise from both experiments and QM
calculations, which is a high priority to avoid overtting.48 In
order to solve this issue, active learning and transfer learning
can be applied, which are efficient in compensating for the lack
of data. In other words, having a large database composed of
DFT-calculated and experimental data is required to train the
generalized ML algorithm for systematic and comprehensive
discovery of SACs. We expect that in the near future, with a huge
database and a universal ML algorithm, the applicability of
theoretical calculations for electroreduction reactions using
This journal is © The Royal Society of Chemistry 2022
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SACs will be improved greatly.242 In addition, the vast parameter
space for dynamic catalysts requires applying ML to screen
candidate catalysts by predicting the regions with high selec-
tivity and operability.243 The effect of the coordination number,
coordination atoms, designed bond length, and bond angle on
the current density, overpotentials, and reaction mechanism
should be considered through ML.244–246

(4) ML has the potential to predict the properties of SACs very
quickly and accurately, but its application has been limited to
specic systems using various ML algorithms. Therefore, a fair
comparison to assess the strengths and best use of different ML
algorithms is needed. Also, similar to ML-aided retrosynthesis
and reaction planning,72,247,248 a strong need is the development
of a universal (generalized) ML algorithm that changes ML from
a supportive tool to a surrogate tool for SAC design. This
universal ML algorithm should be extended to widespread SACs
and supports for all electroreduction reactions toward efficient
and cost-effective potential SACs to balance between the activity
and stability.249

(5) In Table 1, two-dimensional (2D) materials leading to
reduced computational cost due to their simplicity in structure
are shown. However, three-dimensional (3D) materials, such as
oxides and nitrides,250,251 play a major role in catalysis and
should be extensively investigated by using existing or new ML
algorithms.
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