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Early and accurate diagnosis of gastric cancer is vital for effective and targeted treatment. It is known that

glycosylation profiles differ in the cancer tissue development process. This study aimed to profile the

N-glycans in gastric cancer tissues to predict gastric cancer using machine learning algorithms. The

(glyco-) proteins of formalin-fixed parafilm embedded (FFPE) gastric cancer and adjacent control tissues

were extracted by chloroform/methanol extraction after the conventional deparaffinization step. The

N-glycans were released and labeled with a 2-amino benzoic (2-AA) tag. The MALDI-MS analysis of the

2-AA labeled N-glycans was performed in negative ionization mode, and fifty-nine N-glycan structures

were determined. The relative and analyte areas of the detected N-glycans were extracted from the

obtained data. Statistical analyses identified significant expression levels of 14 different N-glycans in

gastric cancer tissues. The data were separated based on the physical characteristics of N-glycans and

used to test in machine-learning models. It was determined that the multilayer perceptron (MLP) was the

most appropriate model with the highest sensitivity, specificity, accuracy, Matthews correlation coeffi-

cient, and f1 scores for each dataset. The highest accuracy score (96.0 ± 1.3) was obtained from the

whole N-glycans relative area dataset, and the AUC value was determined as 0.98. It was concluded that

gastric cancer tissues could be distinguished from adjacent control tissues with high accuracy using mass

spectrometry-based N-glycomic data.

Introduction

Cancer is the abnormal proliferation of cells due to both
genetic problems and environmental influences. Because of
metastasis, it spreads to other tissues and organs and multi-
plies.1 Gastric cancer is the third most common cause of
cancer death worldwide.2 It is mainly seen in the elderly and
diagnosed histologically. Scientists have been trying to reduce
the deadly effects of all types of cancer including gastric
cancer.3 Detecting cancer accurately in the early stages is vital
in terms of starting treatments in the earliest period. Many
researchers are focusing on this issue and trying to develop

new methods for cancer diagnosis.4 Efforts to find new bio-
markers for cancer diagnosis are increased in the literature.5

Glycosylation, which is the attachment of glycan structures
to proteins, is a post-translational modification that causes
wider proteomic variety compared to other post-translational
modifications.6,7 It is critical for various cellular processes,
such as cell adhesion to the extracellular matrix and protein–
ligand interactions within the cell.6 Therefore, it is necessary
to detect the changes in diseases that occur during glycosyla-
tion.8 It has been reported that abnormal glycosylation in
protein structures is associated with cancer, genetic disorders,
and immune system diseases.9–11 These variations in glycosyla-
tion can be identified by specific changes in O- and N-glycan
structures.12 Furthermore, differences in glycosyl-transferase
expression, which is described as the production of transcripts
and enzyme activity, dramatically affect the output of different
glycans and the degree of branching of core glycans that can
alter the glycan structures.13,14 Glycomics is a field that
focuses on the analysis of N- or O-linked glycans found in the
cellular glycoproteome. Thanks to the technological advances
in mass spectrometry and sample preparation methods,
glycans belonging to any biological sample can be profiled
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accurately and quickly.15–17 Although many studies have
demonstrated the alteration of glycosylation in cancer pro-
cesses, its performance in cancer-control distinction in many
biomedical applications has not been adequately examined
yet. Regarding glycosylation analysis, most of the studies con-
ducted with machine learning have focused on data analysis
such as predictions of glycosylation sites or glycoforms.18–22 In
very few studies, clinical glycomics have been integrated with
machine learning. Recently, in a study conducted by
Chocholova et al., a machine learning application was com-
bined with glycomics to identify seropositive and seronegative
rheumatoid arthritis patients.23 Mészáros et al. developed
another application profiling the human serum N-glycome for
lung tumor surgery by using machine learning-based ana-
lysis.24 In addition, Pan et al. used machine learning to screen
and diagnose colorectal cancer and advanced adenoma based
on human serum N-glycome profiles.25

The aberrant glycan profiles play a vital role in the patho-
physiological steps of gastric cancer. It has been determined
that glycosylation is a modulator for gastric cancer cell behav-
ior and can be used for the clinical management of cancer
patients.26 The significant targets of clinical cancer manage-
ment are to enhance early diagnosis, improve medicinal conse-
quences, and ease the suffering of patients. Novel approaches
for early diagnosis are required, and glycans can be a valuable
source for such applications. Most of the traditional cancer
markers, such as CEA125 (for ovarian cancer) and PSA (for
prostate cancer), are glycoproteins used for diagnosis.27

However, the specificity and sensitivity of these markers to
detect several cancer types are poor.28 Therefore, research is
needed for new biomarker candidates. On the other hand, pro-
filing the glycans of a particular glycoproteome may contribute
to creating a biomarker with higher specificity for early cancer
detection. Indeed, specific glycosylation profile-based bio-
marker candidate has improved the early diagnosis of cancers,
such as prostate cancer.29 Therefore, considering the potential
change of N-glycan profiles during gastric cancer cell prolifer-
ation, we tried to distinguish gastric cancer tissues from
control tissues by using a machine learning model to reduce
the time and cost of the diagnosis.

Machine learning is a branch of artificial intelligence that
uses various statistical and optimization techniques that allow
computers to learn from past examples and detect distinctive
patterns, which are difficult to distinguish, from large and
complex data sets.30 Machine learning algorithms are fre-
quently used in biomedicine applications, such as the calcu-
lation of risk factors of individuals in many diseases, cancer
diagnosis, image processing, and drug discovery.31–34 The
need for accuracy in the histopathological diagnosis of cancer
is increasing since there is a need for accurate biomarker
assessment for personalized cancer therapy.35 Therefore, to be
able to diagnose diseases rapidly, it is necessary to develop
new applications similar to the histopathological method of
cancer tissues.

In this current study, an approach was developed to predict
gastric cancer tissues with the help of machine learning by

using mass spectrometry-based N-glycan datasets. The analysis
of N-glycans derived from FFPE cancer and control tissues was
achieved with a fast approach by MALDI-MS. The datasets were
created using the detected N-glycans’ relative and analyte
areas. Machine learning models were tested to distinguish
gastric cancer tissues from adjacent control tissues based on
their N-glycome profiles. Based on our knowledge related to
the literature, it can be said that this is the first study focusing
on distinguishing gastric cancer tissues from adjacent control
tissues by using a machine learning approach integrated with
mass spectrometry-based N-glycomics.

Materials and methods

Some of the materials used in the study, such as methanol,
acetonitrile, acetic acid (CH3COOH), ethanol, xylene, 2-amino
benzoic acid (2-AA), dimethyl sulfoxide (DMSO), trifluoroacetic
acid (TFA), 1,4-dithiothreitol (DTT), sodium dodecyl sulfate
(SDS), sodium cyanoborohydride (NaBH3CN), and sodium
chloride (NaCl), were obtained from Sigma-Aldrich Company
(St Louis, MO, USA). Peptide-N-glycosidase F (PNGase F)
enzyme was obtained from Promega (Madison, WI, USA). 2,5-
Dihydroxy benzoic acid (DHB) was obtained from Bruker
Daltonics (Bremen, Germany). Deionized water (dH2O) was
taken from an Expe–Ultrapure Water System (Mirae St, Korea).

Sample collection

This study was approved by Karabük University Clinical
Research Ethics Committee (Ethics Committee Decision no:
2019/117). FFPE gastric cancer tissues used in the study were
obtained from Karabük University, Faculty of Medicine,
Medical Pathology Department (Karabük-Turkey). The tissue
samples were collected retrospectively. The pathologist distin-
guished cancer and adjacent control tissues by histopathologi-
cal evaluation. Histochemically confirmed gastric specimens
of 33 cancer and 31 adjacent control FFPE tissues were separ-
ately cut from tissue blocks using a microtome. FFPE blocks
were 10 μm thick. The tissue sections were transferred into the
microcentrifuge tubes and stored at room temperature before
the analysis.

Protein extraction and N-glycan release from FFPE tissues

The previously applied protocol was followed with minor
modifications.36 The FFPE tissues underwent the following
process: first, they were subjected to incubation at 60 °C for
half an hour, then treated with 1 mL of xylene for 5 minutes
and rinsed twice with 1 mL of 100% ethanol. The liquids were
removed and the tissues were dried using a SpeedVac concen-
trator at 45 °C for 5 minutes. Next, the tissues were incubated
with 150 μL of 0.1 M DTT, followed by sonication (1.5 pulses
with 3-second intervals for 30 seconds). Finally, 60 µL of 16%
SDS was added to the tissues and they were incubated at 99 °C
for 1 hour while being agitated at 600 rpm. After centrifugation
at 2000 rcf for 20 minutes, 150 µL of each sample was taken
from the upper phase and transferred to new microcentrifuge
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tubes. Then, 600 µL of methanol, 150 µL of chloroform, and
450 µL of deionized water were added to the samples, which
were mixed for 10 seconds and then centrifuged at 14 000 rcf
for 5 minutes. The upper phase was carefully removed without
disturbing the middle pellet. The samples were then treated
with 450 µL of methanol and centrifuged at 14 000 rcf for
10 minutes. The proteins at the bottom were dried using a
speed vacuum concentrator at 45 °C for 30 minutes, and
finally stored at −20 °C.

The dried protein pellet was dissolved by 25 µL of 1% SDS,
followed by vortexing for 20 seconds and incubation at 60 °C
for 5 minutes. Then, 12.5 µL of 2% Igepal-CA360, 12.5 µL of
5X PBS, and 1 µL of PNGase F were added to each sample,
which were further incubated overnight at 37 °C.

2-AA labeling and purifications of N-glycans

For 2-AA labeling of released N-glycans, 25 µL of the 2-AA
(48 mg mL−1), 25 µL of sodium cyanoborohydride (63 mg
mL−1) prepared in DMSO, and glacial acetic acid at a ratio of
10 : 3 were inserted to each sample. The samples were then
incubated at 65 °C for 2 h. As described previously,37 the
labeled N-glycans were purified with cellulose and porous gra-
phitized carbon-containing SPE cartridges.

MALDI-MS analysis

MALDI-MS analyses of 2-AA-labeled N-glycans were performed
using a RapiFlex MALDI-TOF/TOF-MS/MS (Bruker Daltonik
GmbH, Bremen, Germany) incorporating SmartBeam 3D laser
technology. 1 µL of the purified sample solutions was dropped
directly onto the MALDI target plate and allowed to dry. 1 µL of
5 mg mL−1 DHB matrix prepared using 50% dH2O and 50%
ACN was added to the dried samples. The MALDI-MS spectra
were recorded at 20 kV acceleration potential in negative ioniza-
tion mode with a mass range of 1000–4000 Da using reflectron
mode. Spectra were recorded by collecting 8000 laser pulses at
2000 Hz frequency. Four different spectra of each sample were
obtained from 4 different spots and used in the analyses.

Data analysis for MALDI-MS experiments

The obtained MS and MS/MS spectra were transferred to
Protein Scape V4 (Bruker Daltonik GmbH, Bremen, Germany)
software to identify their composition and structures using the
GlycoQuest algorithm. Based on the previous descriptions,38

the N-glycan structures were confirmed with MS/MS spectra
matches by using GlycoQuest algorithms. The analyte areas of
the detected N-glycans were extracted using the MassyTools
software.39 The relative area of each detected N-glycans was cal-
culated using the total area normalization approach. The total
area normalization approach was applied for neutral and
whole N-glycan compositions separately.

Statistical analysis

GraphPad Prism software (9.0) was used for statistical analysis
in the study. Mann–Whitney test was used to determine any
differences in expression levels of N-glycans between gastric
cancer and control tissues. In addition, ROC (Receiver

Operating Characteristics) analysis was performed with a 95%
confidence interval (CI) by the Wilson/Brown method. The
statistical analyses were performed on relative area values.

Machine learning

The data were manually evaluated based on the quality criteria
by checking their S/N ratio. Then, a total of 250 MALDI-MS
spectra were obtained from 33 cancerous and 31 control
tissues and used in the machine learning analysis (ESI Tables
S2–S5†). Data from 4 technical replicates of each cancer and
control sample were included in the study. First, four datasets
were created, including relative and absolute analyte area
values of total and neutral N-glycans obtained from cancerous
and adjacent control tissues. The five-fold cross-validation
approach was used for the training process, and the classifi-
cation accuracy was calculated to illustrate the performance of
each model for the four created different datasets. The con-
fusion matrix and area under the curve (AUC) of the model
were developed to detect the most appropriate method for dis-
tinguishing gastric cancer tissues from adjacent control
tissues. The confusion matrix includes four parameters as
follows: True Positive (TP), False Positive (FP), False Negative
(FN), and True Negative (TN). Whereas TP refers to correctly
determining conditions, FP refers to incorrectly determining
conditions. Whereas FN refers to incorrectly rejected con-
ditions, TN refers to correctly rejected conditions.
Mathematical calculations of sensitivity, specificity, accuracy,
MCC, and F1 score are displayed in eqn (1)–(5).

Sensitivity ¼ TP
TPþ FN

ð1Þ

Specificity ¼ TN
TNþ FP

ð2Þ

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð3Þ

MCC ¼ TP� TNð Þ � ðFP� FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð ÞðTNp þ FPÞðTMþ FNÞ ð4Þ

F1 score ¼ 2� TP
2� TPþ FPþ FN

: ð5Þ

Results and discussion
Profiling of FFPE gastric tissue N-glycans by MALDI-MS

In the study, 33 cancerous and 31 adjacent control tissues
belonging to gastric cancer patients were analyzed.
Demographics of the individuals from the cohort are pre-
sented in Table S1.† In the analysis, proteins were extracted
from the tissues using the method described in the Method
section. Afterward, glycoproteins were treated with the PNGase
F enzyme to release the N-glycans and labeled with a 2-AA fluo-
rescence label. Their analysis was performed by MALDI-MS in
negative ionization mode, and an overview of the applied
methodology is given in Fig. 1. Fig. 2 displays the MALDI-MS
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spectra of gastric cancerous tissue and an adjacent control
tissue. 59 N-glycans, including 45 neutral glycans and 14
acidic glycans, were detected (ESI Table S2†). MS/MS spectra of
37 N-glycans were obtained, and the resulting MS/MS fragment
products were searched using the GlycoQuest tool to confirm
the structure of the glycans. The created datasets were then
used for statistical and machine-learning analysis.

Investigation of N-glycan changes between gastric cancer and
adjacent control tissues

ESI Table S3† shows that there were 14 N-glycans with statisti-
cally significant differences between cancer cases and controls,
as evidenced by a p-value less than 0.001. The relative areas of
N-glycans were compared in a box plot, as shown in ESI
Fig. S1.† In gastric cancer tissues, N-glycans such as H3N2F1,
H4N3F1, H6N5F1, H6N6F1, H7N6F1, H6N5S3, H8N7F1, and
H10N9F1 were increased, while N-glycans including H3N4F1,
H4N4F1, H3N5F1, H4N5F1, and H3N6S1F1 were decreased.
ROC analysis was performed to identify potential biomarker
candidates with the Wilson/Brown method at a 95% confidence
interval, and the results including ROC curve graphs and AUC
values are shown in ESI Fig. S3 and ESI Table S3,† respectively.
The best N-glycan conformations for distinguishing gastric
cancer tissues from controls were found to be H3N5F1 with an
AUC of 0.76 and H7N6F1 with an AUC of 0.75.

Classification of gastric cancer tissues by machine learning
models

In order to differentiate between gastric cancer tissues and
adjacent control tissues, machine learning models were tested

using the relative and analyte areas of the neutral and acidic
N-glycan datasets. The study included 250 MALDI-MS spectra
obtained from technical replicates of 33 cancerous and 31
adjacent control tissue samples. The relative and analyte areas
of N-glycans utilized in the classification analysis are given in
ESI Tables S4–S7.† These datasets were separated as neutral
N-glycans and whole N-glycans, including acidic types (Tables
S4–5† for whole N-glycan datasets, Tables S6–7† for neutral
N-glycan datasets). The study was employed normalized and
non-normalized datasets to evaluate the classification accuracy
of machine learning models in both types of data.

To distinguish between gastric cancer and adjacent control
tissues, machine learning models were tested using four
different datasets. The dataset was divided into folds to evalu-
ate the model’s performance on new data using a five-fold
cross-validation approach. The data sets were divided into
training sets (80%) and validation sets (20%) and various
machine learning models were tested. It was determined that
the multilayer perceptron (MLP) algorithm was the most accu-
rate model for distinguishing gastric cancer tissues based on
N-glycan profiles. The results of the MLP algorithm in terms of
sensitivity, specificity, accuracy, MCC, and F1 score are pro-
vided in Table 1. The best results in terms of predicting gastric
cancer were obtained from the relative area datasets of neutral
and whole N-glycans with accuracy scores of 96.0% and 94.0%,
respectively. The prediction accuracy for the analyte area data-
sets of neutral and whole N-glycans was 92.2% and 94.0%,
respectively. Confusion matrices were also created to validate
the results and determine the most appropriate approach for
classifying gastric cancer tissues. The confusion matrices

Fig. 1 An overview of the methodology applied in the study.
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obtained from the four datasets based on N-glycan profiles are
shown in Fig. 3. The true positive ratios, representing the pre-
diction accuracy of gastric cancer cases, were 93.1% and 96.3%
for the relative area datasets of neutral and whole N-glycans,
respectively. The true negative ratios, representing the predic-
tion accuracy of control tissues, were 100% and 95.6% for the
relative areas of neutral and whole N-glycan datasets, respect-
ively. On the other hand, the true positive ratio for the analyte
area datasets of neutral and whole N-glycans was 92.6% and
96.8%, respectively, while the true negative ratio was 91.7%
and 92.3%, respectively.

In machine learning analysis, the most reasonable perform-
ance metric is the ratio of correctly classified samples to the
total number of samples.40 In addition to accuracy, sensitivity,
and specificity, other parameters, such as the Matthews
Correlation Coefficient (MCC) and F1 score, are also used to
determine the performance of a machine learning model. The
MCC measures the correlation between the binary classifi-
cation predictions made by the model and the actual classifi-
cations, and ranges from −1 to 1, with 1 indicating perfect pre-
diction and −1 indicating complete disagreement between the
predictions and actual results. The F1 score, which combines
the harmonic mean of precision and recall, provides a
balanced evaluation of the model’s performance by taking

both precision and recall into account. The results of the MLP
algorithm showed that the MCC score was 0.92 and the F1
score was 0.96 for the relative area dataset of the all N-glycans,
suggesting that the model has the ability to provide accurate
results based on the high values of both parameters.

ROC curves were obtained to evaluate the diagnostic ability
of each dataset using the MLP model. The performance of the
model was assessed through 5-fold cross-validation in the
training cohort, using the area under the receiver operating

Fig. 2 MALDI-MS spectra of 2-AA labeled N-glycans belonging to (A) gastric cancer tissue, and (B) control cancer tissue.

Table 1 Sensitivity, specificity, accuracy, f1, and MCC results of
machine learning model (multilayer perceptron, MLP) to discriminate
gastric cancer tissues based on their N-glycan profiles

Parameters

Dataset

Neutral
N-glycans
(relative area)

Neutral
N-glycans
(analyte area)

Whole
N-glycans
(relative area)

Whole
N-glycans
(analyte area)

Sensitivity % 0.93 0.93 0.96 0.96
Specificity % 0.87 0.92 0.96 0.92
MCC 0.92 0.84 0.92 0.88
F1 score 0.96 0.93 0.96 0.94
Accuracy % 96.0% 92.16% 96.0% 94.0%
Split (5) average
accuracy score

95.6 ± 3.44 91.37 ± 2.0 96.0 ± 1.26 93.2 ± 3.71
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characteristic curves (AUC). Fig. 4 shows the ROC curves and
the calculated AUC values for each dataset. For the relative
area datasets of neutral and whole N-glycans, the AUC values
were found to be 0.97 and 0.98 respectively (Fig. 4A and C). For
the analyte area datasets of neutral and whole N-glycans, the
AUC values were 0.96 and 0.98, respectively (Fig. 4B and D).

In order to determine which glycan structures played
important roles in discriminating cancer cases from controls,
the Fischer score analysis was applied. Various N-glycan struc-
tures played significant roles in the discrimination of cancer
cases from controls (Fig. S3–6†). It was determined that some
structures with a high Fischer score were the glycans that sig-
nificantly changed between cancer cases and controls (for the
relative area dataset of whole N-glycans). However, the other
glycan structures that were not expressed considerably also
contributed to the model’s performance.

Machine learning is of great interest for computer-aided
diagnostics due to its fast and cost-effective analytical solu-
tions. In this study, machine learning was integrated with
mass spectrometry-based N-glycomics to accurately diagnose
gastric cancer. Four novel datasets were created and analyzed,
including the relative and analyte areas of N-glycan profiles of
gastric cancer and control tissues. After testing various
machine learning models, it was found that MLP was the best
for diagnosing gastric cancer. All datasets showed good sensi-
tivity, specificity, and accuracy (as seen in Table 1). The whole
N-glycan dataset had the highest accuracy (96.0%) and AUC
value (0.98). This demonstrates that machine learning analysis
of glycomic datasets can effectively diagnose gastric cancer in
tissues. Additionally, the normalized datasets (relative areas of
N-glycans) showed more robust results according to the
machine learning performance criteria (as seen in Table 1).

Statistical analysis showed that 14 N-glycan types were
differently expressed in gastric cancer tissues. The best discri-
minator N-glycan types for gastric cancer were H3N5F1 with an
AUC of 0.76 and H7N6F1 with an AUC of 0.75. However, when
all N-glycan types were analyzed together using machine learn-
ing, gastric cancer tissues were discriminated from controls
with high accuracy (96.0%). Additionally, the performance
scores of the machine learning models, including sensitivity,
specificity, MCC, and f1, were found to be high. These results
are stronger because machine learning considers the dataset
as a whole compared to statistical methods.

N-Glycan analysis using MALDI-MS is a common method in
the field of glycomics. In this study, an appropriate method
was chosen for N-glycan profiling of FFPE tissues. A previously
described protocol was employed to extract proteins from
FFPE tissues for N- and O-glycan analysis with PGC-MS.36 This
extraction method yields an adequate amount of proteins
(10–50 µg), as measured by the BCA assay method using a
spectrophotometer. On the other hand, the 2-AA labeling
approach improves the ionization efficiency of N-glycans,
allowing for the efficient analysis of even small amounts.41

The labeling strategy is simple and cost-effective. The use of a
two-step purification process involving HILIC and PGC
materials results in a cleaner sample compared to using a
single HILIC protocol. Furthermore, the deglycosylation
process can be completed in just one hour, rather than requir-
ing overnight incubation. To minimize variations between
samples, all samples were subjected to identical analysis con-
ditions, such as constant voltage and laser energy power. This
method can be applied in any laboratory for quick N-glycan
profiling of tissue and may be used to accurately diagnose
gastric cancer.

Fig. 3 Confusion matrixes of MLP model from different datasets (A) relative area of neutral N-glycans, (B) analyte area of neutral N-glycans, (C) rela-
tive area of whole N-glycans, and (D) analyte area of whole N-glycans.
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Conclusion

In a study, it was discovered that the 14 N-glycan composition
was expressed differently in gastric cancer tissues compared to
adjacent control tissues. The gastric cancer tissues were differ-
entiated from the control tissues using a machine learning
model based on glycomic data. The highest results in accuracy,
specificity, sensitivity, MCC, and F1 score were achieved using
an MLP machine learning model. It was found that the
relative area N-glycan dataset covering all glycans was the best
choice for diagnosing gastric cancer tissue. The N-glycomic
method applied to FFPE tissue and the machine learning
model may be used for an accurate and fast diagnosis of
gastric cancer.
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