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single-molecule magnets†
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Matvey V. Fedin, b Mikhail A. Kiskin a and Igor L. Eremenko a

The reactions of VOSO4·3H2O with Na2(cbdc) (cbdc
2− – dianion of cyclobutane-1,1-dicarboxylic acid)

and lanthanide(III) nitrates taken in a molar ratio of 1 : 2 : 1 were found to yield a series of isostructural het-

erometallic compounds [NaLn(VO)2(cbdc)4(H2O)10]n (1Ln, Ln = Tb, Dy, Ho, Er, Tm, Yb). These compounds

are constructed from trinuclear anionic units [Ln(VO)2(cbdc)4(H2O)8]
− ({LnV2}

−) linked by Na+ ions into 1D

polymeric chains. The crystal structures of 1Dy and 1Er were determined by single-crystal X-ray diffraction

(XRD), and their isostructurality with 1Tb, 1Ho, 1Tm, and 1Yb was proved by powder X-ray diffraction (PXRD).

According to alternating current (ac) magnetic susceptibility measurements, 1Dy, 1Er, and 1Yb exhibited

field-induced slow relaxation of magnetization. Compound 1Er is the first representative of ErIII–VIV

single-molecule magnets. Measuring the temperature dependences of the phase memory time (Tm) for

1Dy and 1Yb using pulsed EPR spectroscopy allowed us to observe the phenomenon of phase relaxation

enhancement (PRE) at temperatures below 30 K. In future, this phenomenon may contribute to the evalu-

ation of relaxation times of the lanthanide ions.

Introduction

Effective ways for the synthesis of heterometallic 3d–4f coordi-
nation compounds exhibiting properties of a bulk magnet at
the molecular level are currently being developed.1 While con-
structing such complex molecules, paramagnetic 3d-metal
ions are used, which are often involved in spin–spin exchange
interactions via a super-exchange mechanism through a dia-
magnetic bridging ligand.2 Thus, the value of the exchange
parameter affects the relaxation characteristics of a single-
molecule magnet (SMM): strong exchange interactions enable
reduction of the contribution of quantum tunneling of magne-
tization (QTM) to the relaxation of magnetization, increasing
the value of the energy barrier for magnetization reversal,
while the presence of weak and dipole–dipole interactions in
the compound reduces the value of this parameter.3

Among all known SMMs based on heterometallic 3d–4f
systems, the magnetic properties of CuII–LnIII complexes are
the most well-studied; the influence of the geometric charac-
teristics of the molecule on the parameter of exchange inter-
actions was shown for these compounds.4 Similar to CuII, the
VIV ion also has S = 1/2, however, the electronic structure of

†Electronic supplementary information (ESI) available: Orbital diagrams for CuII

and VIV ions; PXRD patterns for 1Ln series; continuous shape measures (CShM)
for LnO8 coordination polyhedra in 1Dy, 1Er; tables of selected bond angles in
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zation M(T ) and M(H/T ) dependences for 1Ln, frequency dependences of the in-
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these ions is different: a single unpaired electron of VIV is
located on the dxy orbital, but not on the dx2−y2 orbital, as in
the case of CuII (Fig. S1†).5 In this regard, CuII–LnIII and VIV–

LnIII compounds cannot be expected to exhibit identical mag-
netic properties. In addition, the geometric features of the
VIVO2+ ion, i.e. the presence of an oxo group, exclude the for-
mation of VIV–LnIII compounds similar in structure to their
analogues containing the ions of CuII and other divalent 3d-
metals. Despite ongoing studies of VIV–LnIII complexes, very
few such compounds exhibiting SMM properties have been
obtained so far.6 Therefore, the synthesis and detailed study of
the magnetic properties of VIV–LnIII systems is an urgent task
of modern coordination chemistry. The presence of a single
unpaired d-electron also gives rise to the interest in VIV com-
pounds as potential candidates for molecular-based spin
qubits7 and makes them convenient objects for the study by
EPR spectroscopy.

On the other hand, it is of interest to study 3d–4f SMMs
containing lanthanide ions rarely used for these purposes, for
example, ErIII and YbIII (see ref. 8) or non-Kramers lanthanide
ions, HoIII and TmIII (see ref. 9 and 10), for which the coordi-
nation environment is of great importance to control the mag-
netic anisotropy. To date, 3d–4f SMMs with HoIII, ErIII, TmIII,
and YbIII ions still remain much less studied than their TbIII

and DyIII-containing counterparts.
Polydentate ligands that combine chelation with a variety of

bridging coordination modes enable the constructing stable
anionic blocks with atoms of 3d-elements and binding them
with 4f-metal ions in a polynuclear molecule or coordination
polymer without the use of additional ligands. An additional
factor in the design of 3d–4f compounds can be the alkali
metal ions introduced at the synthesis stage, which are dia-
magnetic, but often play a structure-directing role in the for-
mation of the structure in the crystal, and therefore can influ-
ence the molecular geometry of the complex and, in particular,
the coordination environment of paramagnetic metal centers.
The structure-directing role of alkali metal ions has been
studied for coordination polymers of s-elements,11 heteronuc-
lear compounds of s-3d (see ref. 12) and s-4f metals.13 Very few
such studies are known for heterometallic 3d–4f systems.14

In our previous studies, we investigated the influence of the
ionic radii of MI (M = Na, K, Rb, Cs) and LnIII on the compo-
sition, structure, and magnetic properties of heterometallic
compounds formed in the MI–LnIII–VIV systems with anions of
cyclobutane-1,1-dicarboxylic acid (H2cbdc).

6a,c,15 According to
X-ray diffraction studies, alkali metal ions in this series of
compounds affect not only the crystal packing of the com-
pound, but also the geometric characteristics of the LnIII–VIV

molecular fragments that form it, and, as a consequence, the
exhibited magnetic properties. For NaI, the formation of 1D
polymeric structures [NaLn(VO)2(cbdc)4(H2O)10]n was found in
the systems with diamagnetic rare-earth metal ions YIII and
LuIII (see ref. 16), as well as with GdIII (see ref. 15).

The present work is the logical continuation of our previous
research, so it sets out to synthesize heterometallic NaI–LnIII–

VIV compounds with paramagnetic lanthanide ions from TbIII

to YbIII having high magnetic anisotropy and to study the slow
magnetic relaxation phenomenon in the resulting complexes.

Results and discussion
Synthesis

The reactions of aqueous oxovanadium(IV) nitrate (prepared
via metathesis between VOSO4·3H2O and Ba(NO3)2 in water),
Na2(cbdc) and lanthanide(III) nitrates (TbIII, DyIII, HoIII,
ErIII, TmIII, YbIII) in a molar ratio of 1 : 2 : 1 yielded blue
crystals of a series of heterometallic compounds [NaLn
(VO)2(cbdc)4(H2O)10]n (1Ln). Barium nitrate was added to the
reaction mixture to remove sulfate anions from the solution,
because the presence of these anions causes the crystallization
of LnIII sulfates.

The description of crystal structures

According to PXRD data, all 1Ln compounds are isostructural
(Fig. S2 in ESI†). The crystal structures of 1Dy and 1Er were
determined by single-crystal XRD. Compounds 1Dy and 1Er
crystallize in monoclinic space group C2/c. The asymmetric
units of 1Dy and 1Er contain one vanadium atom (V1), one
lanthanide atom (Dy1 or Er1), and one sodium atom (Na1). In
addition to the vanadyl oxo group, V1 atom coordinates two
chelating cbdc2− anions and one water molecule, thus forming
mononuclear bis-chelate {VO(cbdc)2(H2O)}

2− moiety.
The geometry of vanadium coordination polyhedron is a

distorted octahedron (VO6) whose equatorial plane is formed
by four carboxylate O atoms. The O atoms of the oxo group
and water molecule occupy the axial positions and form the
shortened (∼1.60 Å) and the elongated (∼2.30 Å) bonds with a
metal center, respectively (Fig. 1 and Table 1). The V1 atom
deviates from the equatorial plane by 0.371 Å (in 1Dy) and
0.374 Å (in 1Er) towards oxo group, giving rise to the increase
of VvO/V–O(cbdc) bond angles and the decrease of V–O
(cbdc)/V–O(H2O) ones (Table 2).

Each lanthanide atom binds to the two {VO(cbdc)2(H2O)}
2−

moieties via the coordination of two unchelated carboxylate O
atoms. In the resulting {LnV2}

− trinuclear unit, the central
lanthanide atom additionally coordinates six water molecules
completing its polyhedron having the geometry of a triangular
dodecahedron (TDD-8, the deviations from the ideal figure,
CShM values are 0.630 and 0.640 for 1Dy and 1Er respectively)
(see Table S1 in the ESI†).17 Selected bond angles in the
coordination polyhedra of lanthanides in structures 1Dy and
1Er are given in Tables S2 and S3 in the ESI†.

The neighboring [Ln(VO)2(cbdc)4(H2O)8]
− units are linked

into a 1D polymeric structure due to the coordination of Na
atoms to the carboxylate O atoms involved in the chelation of
vanadium (Fig. 1 and Table 1). Each Na atom coordinates two
monodentate water molecules. The crystal structures of 1Dy
and 1Er are additionally stabilized by the network of hydrogen
bonds, whose formation involves all the coordinated water
molecules, the carboxylate O atoms, and vanadyl oxo group
(Tables S4 and S5 in the ESI†).
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Magnetic properties

The magnetic properties of the series of isostructural com-
pounds 1Ln (Ln = Tb, Dy, Ho, Er, Tm, Yb) were studied by
measuring the temperature dependences of molar magnetic
susceptibility (χ) in the 2–300 K temperature range under 5000
Oe dc-magnetic field. For all compounds, the experimental χT
values at 300 K are in satisfactory agreement with theoretical

ones for two magnetically isolated VIV ions and one LnIII ion
(Table 3). For TbIII, DyIII, HoIII, ErIII, and TmIII-containing com-
pounds, the χT values at 300 K slightly exceed the theoretical
ones, but generally fit into the range of acceptable deviations
(about 10% from the corresponding theoretical χT value).

For 1Dy, 1Ho, 1Er (Fig. 2), the χT values monotonously
decrease in the range from 300 to 100 K and then gradually
decrease with decreasing temperature. On cooling below 10 K,
the χT values sharply drop and reach a minimum at 2 K.

For 1Tb, a monotonous increase in the χT is observed in the
range from 300 to 30 K, probably indicating the presence of
weak ferromagnetic interactions. It should be noted that the
field-induced orientation of polycrystals was excluded by using
the mineral oil during the sample preparation (see
Experimental part). With a further decrease in temperature, a
sharp decrease in the χT value occurs, reaching a minimum at
2 K. For 1Tm, the χT value remains virtually constant up to
16 K and then sharply decrease with a further decrease in
temperature down to 2 K.

Fig. 1 The fragment of the 1D polymeric chain of 1Dy (cyclobutane moieties are omitted for clarity) [symmetry codes: (a) 1 − x, y, 0.5 − z; (b) −x, y,
0.5 − z; (c) −1 + x, y, z; (d) 1 + x, y, z].

Table 1 Selected bond lengths and the shortest interatomic distances
(d, Å) in structures 1Dy and 1Er

Compound 1Dy (Ln = Dy) 1Er (Ln = Er)
Bond/distance d
VvO 1.600(2) 1.602(4)
V–O(cbdc) 1.965(2)–2.024(2) 1.965(4)–2.024(4)
V–O(H2O) 2.299(2) 2.310(4)
Ln–O(cbdc) 2.361(2) 2.335(3)
Ln–O(H2O) 2.349(2)–2.384(2) 2.317(4)–2.372(4)
Na–O(cbdc) 2.536(2), 2.637(2) 2.530(4), 2.638(4)
Na–O(H2O) 2.411(2), 2.447(2) 2.413(4), 2.449(4)
Ln⋯V 5.719(1) 5.699(2)
V⋯V 6.245(1) 6.249(3)

Table 2 Selected bond angles (ω, °) characterizing the coordination
polyhedra of vanadium in complexes 1Dy and 1Er

Compound 1Dy 1Er
Angle ω
VvO/V–O(cbdc) 100.00(10)–101.90(11) 99.98(18)–102.08(18)
VvO/V–O(H2O) 177.65(10) 177.91(18)
V–O(cbdc)/
V–O(cbdc) (acute)

85.62(9)–90.12(8) 85.39(15)–90.24(15)

V–O(cbdc)/
V–O(H2O) (acute)

76.84(8)–81.88(8) 76.76(14)–81.73(14)

Table 3 The χT values for 1Ln under 5000 Oe field

Compound
χT (theor.),
cm3 K mol−1

χT (300 K),
cm3 K mol−1

χT (2 K),
cm3 K mol−1

1Tb (Tb
IIIVIV

2 ) 12.58 13.74 6.76

1Dy (Dy
IIIVIV

2 ) 14.93 15.06 8.49

1Ho (HoIIIVIV
2 ) 14.83 15.15 4.68

1Er (Er
IIIVIV

2 ) 12.24 12.53 6.58

1Tm (TmIIIVIV
2 ) 7.91 8.60 6.69

1Yb (Yb
IIIVIV

2 ) 3.33 3.37 2.24
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For 1Yb, a monotonous decrease in the χT value is observed
in the range from 300 to 2 K. Such a behavior of the com-
pounds under study can be due to the possible presence of
spin–spin antiferromagnetic interactions and/or the depopula-
tion of the excited Stark sublevels.18 The M(H) and M(H/T )
dependences for all obtained complexes were also measured at
2, 4, and 6 K (Fig. S3–S6 in the ESI†).

In order to study magnetization relaxation of the com-
pounds, ac-magnetic susceptibility measurements were carried
out. In the absence of a dc-magnetic field, the values of the
out-of-phase component of dynamic magnetic susceptibility
(χ″) were close to zero for all the compounds, which may be
due to a strong contribution from quantum tunneling to the
relaxation of magnetization. Application of an external dc-field
enabled to significantly reduce this effect and observe the χ″
non-zero values for 1Dy, 1Er, 1Tm, and 1Yb (Fig. S7–S12 in the
ESI†).

The highest relaxation times were achieved on applying the
optimal fields of 1000 Oe for 1Dy, 1Er, 1Tm, and 2500 Oe for 1Yb
(Fig. S13–S15†). To produce the τ vs. 1/T plots, the χ″(ν) iso-
therms were approximated by the generalized Debye model
(Fig. S16–S19 in the ESI†). The plots of τ vs. 1/T thus obtained
were approximated by the equations corresponding to
different relaxation mechanisms and their combinations. In
the high-temperature range, all the τ vs. 1/T dependences were
approximated using only the Orbach relaxation mechanism
(τ−1 = τ0

−1·exp{−Δeff/kBT}) to estimate the value of the effective
energy barrier (Fig. 3, 4 and 5).

According to the approximation of χ″ vs. ν dependencies by
the generalized Debye model (Fig. S16†), there are at least two
or even more relaxation processes for complex 1Dy also con-
firmed by Cole–Cole plots (Fig. S20 in the ESI†). This may be
due to the independent relaxation of DyIII and VIV ions19 and/
or possible disorder of water molecules coordinated to DyIII

(see ref. 14c and 20). Unfortunately, we failed to obtain iso-

structural analogue of complex 1Dy with diamagnetic d-metal
ions (ZnII, CdII), so it was impossible to evaluate the contri-
bution of DyIII ions to the magnetic relaxation dynamics of
complex 1Dy. Previously, the magnetic properties of isostruc-
tural complexes [NaLn(VO)2(cbdc)4(H2O)10]n with diamagnetic
rare-earth ions (Ln = YIII, LuIII) were studied.16 In both com-
plexes, the presence of field-induced slow relaxation of magne-
tization was shown by ac-susceptibility measurements. This
suggests the contribution of VIV ions to the magnetic relax-
ation dynamics in the case of complex 1Dy. Therefore, τ vs. 1/T

Fig. 2 The experimental χT vs. T plots for compounds 1Ln in the range
of 2–300 K under 5000 Oe field. Fig. 3 The τ vs. 1/T plots for 1Dy under 1000 Oe field. Blue dashed lines

represent the fittings of high-temperature ranges by the Orbach mecha-
nism. Red solid lines represent the fittings in the whole temperature
range by the sum of the Orbach and QTM relaxation mechanisms.

Fig. 4 The τ vs. 1/T plots for 1Er under 1000 Oe field. Blue dotted line
represents the fitting of a high-temperature range by the Orbach
mechanism. Red solid line represents the fitting by the Raman relaxation
mechanism.
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plots for 1Dy were built using both low-frequency (LF) and
high-frequency (HF) maxima of χ″ vs. ν dependencies (Fig. 3).
The good agreement between the experimental τ vs. 1/T plots
and approximation equation can be achieved using parameters
for the sum of the Orbach and QTM relaxation mechanisms
(τ−1 = τ�1

0 ·exp{−Δeff/kBT} + B) both for LF and HF (Table 4).
For 1Yb, the best-fit of the experimental τ vs. 1/T depen-

dence in the whole temperature range was achieved by the
sum of the Raman and direct relaxation mechanisms accord-
ing to the equation τ−1 = CRamanT

n_Raman + AdirectTH
4 (Fig. 5).

For 1Er, the corresponding fit was achieved with the use of
only the Raman relaxation mechanism (τ−1 = CRamanT

n_Raman)
(Fig. 4).

For 1Tm, the χ″ values are less than the χ′ ones by more than
10 times (but χ′/χ″ ratio is close to 10), thus the presence of
slow relaxation of magnetization is questionable in this case.
All obtained magnetic relaxation data for 1Tm is presented in
the ESI (Fig. S21 and Table S6†).

The best-fit parameters for the approximations of τ vs. 1/T
plots obtained for 1Er and 1Yb are given in Table 5.

It is worth pointing out that for 1Er, the value of nRaman = 7
is lower than the expected value for the Kramers systems (n =
9), indicating the presence of a Raman process through spin-
phonon relaxation.21

In addition, for all compounds, the calculations of alterna-
tive magnetic relaxation parameters were performed using
MagSuite v.3.2 software.22 The results obtained are presented
in Fig. S22–S24 and Tables S7–S9.†

The first VIV–DyIII SMM was described by K. Kotrle et al.
(see ref. 6b), but the authors failed to determine possible relax-
ation mechanisms and estimate the effective energy barrier for
this compound. The literature review showed that the value of
Δeff/kB calculated for 1Dy is higher than those for the most
known 3d-DyIII SMMs with paramagnetic 3d-metal ions and a
similar triangular dodecahedral DyO8 coordination environ-
ment (Table 6).

Considering the previously obtained magnetic data for
potassium-containing analogues of 1Dy and 1Yb (see ref. 6a),
it can be concluded that in VIV–LnIII systems with cbdc2−,
the substitution of potassium by sodium ions giving rise to
a significant change in the crystal structure and coordi-
nation environment of the lanthanide ion has a positive
influence on their SMM behavior. For 1Dy, the appearance
of slow magnetic relaxation is observed compared to KI–VIV–

DyIII compound. One of the possible explanations for such
differences in the magnetic behavior of two Dy-containing
compounds may be the difference in DyIII coordination poly-
hedra, which is a biaugmented trigonal prism (C2v sym-
metry) in KI–DyIII–VIV and a triangular dodecahedron (D2d

symmetry) in 1Dy. Another factor influencing SMM behavior
is supposed to be the longer Dy⋯V distances in 1Dy
(5.719 Å) compared to KI–VIV–DyIII (4.627 Å), that allow
weakening of dipole–dipole interactions between DyIII and
VIV ions.

For 1Yb, the increase in the Δeff/kB value to 44.8 K occurs
compared to the KI–YbIII–VIV compound (Δeff/kB = 26 K),
although, in these compounds, the YbIII coordination polyhe-
dra have similar geometry (triangular dodecahedron) and the
shortest Yb⋯V distances are also similar (5.684 Å in KI–YbIII–
VIV and ∼5.7 Å in 1Yb). Thus, the possible influence of crystal
packing and intermolecular interactions on SMM behavior can
be assumed in this case.

The literature review showed that 3d-ErIII and 3d-YbIII

SMMs containing paramagnetic 3d-metal ions are quite rare
(Tables 7 and 8). To date, compound 1Er is the first representa-
tive of heterometallic VIV–ErIII single-molecule magnets. The
value of Δeff/kB calculated for 1Er is comparable with those for
compounds with triangular dodecahedral ErO8 coordination
environment (Table 7). Among all reported heterometallic
compounds of such type, 1Yb displays the record value of Δeff/
kB (Table 8).

Fig. 5 The τ vs. 1/T plots for 1Yb under 2500 Oe field. Blue dotted line
represents the fitting of a high-temperature range by the Orbach
mechanism. Red solid line represents the fitting by the sum of the
Raman and direct relaxation mechanisms.

Table 4 The best-fit parameters of magnetization relaxation for 1Dy

Orbach Orbach + QTM

Δeff/kB, K τ0, s Δeff/kB, K τ0, s B, s−1

LF 50.4 ± 0.2 2.70 × 10−8 ± 8 × 10−10 52 (fixed) 2.1 × 10−8 ± 2 × 10−9 560 ± 11
HF 26 ± 2 4 × 10−7 ± 1 × 10−7 39 ± 3 6 × 10−8 ± 3 × 10−8 9066 ± 294
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EPR spectroscopy of 1Yb and 1Dy

Continuous wave (CW) EPR spectra of 1Yb and 1Dy at room
temperature are typical for oxovanadium(IV) complexes and
display hyperfine structure of VIV ion (Fig. 6). No signatures of
YbIII and DyIII ions are observed at room temperature, but the
spectrum is dominated by VIV EPR signal. This signal can be
simulated using typical26 g- and A-tensors (the latter refers to
the hyperfine interaction tensors): g = [1.975 1.975 1.938], A =

[185 185 520] MHz for 1Dy, and g = [1.974 1.974 1.941], A = [164
164 521] MHz for 1Yb. Reference compound 1Y with diamag-
netic rare-earth metal ion (YIII) shows almost the same EPR
signal of VIV at room temperature and can be simulated using
the very similar set of parameters g = [1.974 1.974 1.938], A =
[184 184 518] MHz, which agrees well with previous data.16

However, as the temperature lowers, EPR spectra of both
1Yb and 1Dy become broader, resulting in one line with unre-
solved structure at 10 K (Fig. 6). This trend is unusual as most

Table 5 The best-fit parameters of magnetization relaxation for 1Er and 1Yb

Compound

Orbach Raman + direct Raman

Δeff/kB, K τ0, s Adirect, K
−1 Oe−4 s−1 CRaman, s

−1 K−n_Raman n_Raman CRaman, c
−1 K−n_Raman n_Raman

1Er 19.2 ± 0.2 1.8 × 10−8 ± 1 × 10−9 — — — 41.0 ± 0.5 7 (fixed)
1Yb 44.8 ± 0.5 5.3 × 10−8 ± 4 × 10−9 1.20 × 10−11 ± 2 × 10−13 3.5 × 10−2 ± 4 × 10−3 7 (fixed) — —

Table 6 Parameters of slow magnetic relaxation of the reported 3d-DyIII SMMs with paramagnetic 3d-metal ions and triangular dodecahedral
DyO8 coordination environment

Compound
DyIIIO8 coordination
polyhedron

Δeff/kB,
K (Hdc, Oe) τ0, s Ref.

[DyIII2 NiII2 (bpy
[1])2(NO2-benz

[2])10] TDD-8a 2.8 (0) 5.47 × 10−6 23a
[{DyIII(hfac[3])3}2{Ni

II(bpca[4])2}]·CHCl3 TDD-8 4.9 (1000) 1.3 × 10−6 23b
[FeIII6 DyIII3 (OMe)9(vanox

[5])6(Br-benz
[6])6] TDD-8 4.9 (1000) 5.2 × 10−5 23c

[DyIII2 CoII6 (OH)4(L
[7])6(piv

[8])8(MeCN)2]·0.5CH2Cl2 TDD-8 7.7d (1000) 5.7 × 10−8 23d
[CoII2 (L

[9])2(PhCO2
[10])2DyIII2 (hfac)4] TDD-8 8.8d (0) 2.0 × 10−7 23e

7.8d (1000) 3.9 × 10−7

[{DyIII(hfac)3}2{Fe
II(bpca)2}]·CHCl3 TDD-8 9.7 (1000) 8.7 × 10−8 23b

[NiII3 Dy
III
3 (O)(OH)3(L

[11])3(piv)3](ClO4)·8MeCN·3CH2Cl2·5.5H2O TDD-8 ∼10 (3000) ∼10−6 23f
[NiII2 Dy

III
2 (CO3)2(HL[12])(EtOH)(OAc[13])]·2EtOH TDD-8 11.52 (1200) 5.01 × 10−6 23g

[FeIII6 DyIII3 (OMe)9(vanox)6(benz
[14])6] TDD-8 12.4 (2000) 8.0 × 10−5 23h

[CoII4 Dy
III
4 (L[15])4(piv)8(OH)4(MeOH)2] H2O·3MeOH TDD-8 12.5 (0) 1.51 × 10−6 23i

[DyIII2 NiII2MnIII
2 (L[16])4(OAc)2(OH)4(MeOH)2](NO3)2·2MeOH TDD-8 13.0 (0) 2.8 × 10−7 23j

[DyIII2 NiII4 (L
[16])4(OAc)2(OH)4(MeOH)2]·4MeOH TDD-8 13.4 (0) 3.4 × 10−7 23j

[DyIII2 NiII2 (OH)3(OAc)4(HL[17])2(MeOH)3](ClO4)3 3MeOH TDD-8 ↔ BTPR-8b 7.6 (1200) 7.5 × 10−6 23k
[DyIII2 CoII8 (OMe)2(L

[18])4(HL[18])2(OAc)2(NO3)2(MeCN)2]·MeCN·H2O TDD-8 14.89 (0) 1.68 × 10−7 23l
[DyIIIFeII(H2O)(phen

[19])(mbenz[20])5] TDD-8 17 (3000) 2.6 × 10−9 23m
[DyIIINiII(H2O)(phen)(mbenz)5] TDD-8 20 (5000) 1.38 × 10−8 23m
[FeIII6 DyIII3 (OMe)9(vanox)6(F-benz

[21])6] TDD-8, TDD-8 ↔ SAPR-8c 21.3 (1500) 4.1 × 10−7 23c
[DyIII2 NiII2 (bipy)2(mbenz)10] TDD-8 25.9 (0) 1.16 × 10−6 23a
[(L[22])DyIIIMnIV

3 O4(OAc)3(DMF)2](OTf
[23]) TDD-8 27 (0) 2.13 × 10−8 23n

[CrIII2 DyIII2 (OMe)(OH)(4-tBubenz[24])4(
tBudea[25])2(NO3)2]·MeOH·2Et2O TDD-8 ↔ SAPR-8 31.3e (0) 7.7 × 10−8 23o

[FeIII6 DyIII3 (OMe)9(vanox)6(Cl-benz
[26])6] TDD-8, TDD-8 ↔ SAPR-8 36.1 (2000) 3.4 × 10−7 23c

[DyIII2 NiII2 (bpy)2(benz)10] TDD-8 39.9 (0) 1.80 × 10−8 23a
[NaDyIII(VIVO)2(cbdc)4(H2O)10]n TDD-8 LF: 50.4 (1000) 2.70 × 10−8 This work

HF: 26 (1000) 4 × 10−7

[DyIII2 CuII
6 (ipO

[27])6(H2O)12]n TDD-8 63.68 (2000) 3.77 × 10−8 23p
[MnIV

3 MnIII
18Dy

IIIO20(OH)2(piv)20(HCO2
[28])4(NO3)3(H2O)7]·5MeNO2 H2O TDD-8 74 (0) 2.0 × 10−12 23q

[DyIII2 CrIII2 (OH)2(FcCO2
[29])4(NO3)2(Htea[30])2]·2MePh[31]·2THF TDD-8 75 (0) 26 × 10−9 23r

[NiII6 Dy
III(L[32])8(OAc)2(NO3)(OH)2(OMe)2] TDD-8 122.73 (0) 7.64 × 10−13 23s

[1]bpy = 2,2′-bipyridine; [2]NO2-benz
− = 3-nitrobenzoate; [3]hfac− = 1,1,1,5,5,5-hexafluoroacetylacetonate; [4]bpca− = bis(2-pyridylcarbonyl)amine;

[5]H2vanox = o-vanillinoxime; [6]Br-benz− = 4-bromobenzoate; [7]HL = 6-chloro-2-pyridinol; [8]piv− = trimethylacetate; [9]H2L = N,N′-dimethyl-N,N′-
bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine; [10]PhCO2

− = phenylacetate; [11]H2L = 6,6′-{(2-(dimethylamino)ethylazanediyl)-bis(methylene)}
bis(2-methoxy-4-methylphenol); [12]H3L = N,N′-bis(3-methoxysalicylidene)-1,3-diamino-2-propanol; [13]OAc− = acetate; [14]benz− = benzoate; [15]H2L
= (2-((2-hydroxy-3-methoxybenzylidene)amino)benzoic acid); [16]H2L = 2-{[(2-hydroxy-3-methoxybenzyl)imino]methyl}phenol; [17]H2L = 2-(ben-
zothiazol-2-ylhydrazonomethyl)-6-methoxyphenol; [18]H3L = ligand formed from the in situ condensation reaction of 3-amino-1,2-propanediol
with 2-hydroxy-1-naphthaldehyde; [19]phen = 1,10-phenanthroline; [20]mbenz− = 3-methylbenzoate; [21]F-benz− = 4-fluorobenzoate; [22]L = 1,3,5-
Tris(2-di(2′-pyridyl)hydroxymethylphenyl)benzene; [23]OTf− = trifluoromethanesulfonate; [24]4-tBubenz = 4-tert-butylbenzoate; [25]tBudeaH2 = N-
tert-butyldiethanolamine; [26]Cl-benz = 4-chlorobenzoate; [27]ipO− = 2-hydroxyisophthalate; [28]HCO2

− = formate; [29]FcCO2
− = ferrocenecarboxylate;

[30]teaH3 = triethanolamine; [31]MePh = toluene; [32]HL = 8-hydroxyquinoline. a TDD-8 = triangular dodecahedron. b BTPR-8 = bicapped trigonal
prism. c SAPR-8 = square antiprism. d Rough estimation using ln(χ″/χ′) = ln(2πντ0) + Δeff/kBT equation. e Recalculated from cm−1.
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relaxation processes become slower at low temperatures,
leading to the narrowing of EPR lines. Remarkably, the EPR
spectrum of reference compound 1Y still shows a resolved
hyperfine structure at 10 K; therefore, drastic broadening of
EPR spectra in cases of 1Yb and 1Dy at 10 K should be assigned
to the interactions between VIV and YbIII/DyIII ions. Note that,
in addition to VIV signal, the 10 K spectrum of 1Yb shows a
small feature at ∼100 mT, that is tentatively assigned to the
contribution of YbIII.27

These interactions are more clearly evident in pulse EPR. In
order to complement ac-magnetic susceptibility data and shed
light on faster processes on micro- and submicroseconds time-
scales, we performed measurements of phase memory time
(Tm) for 1Yb and 1Dy at 10–60 K. Two-pulse (Hahn) echo was
monitored as a function of interpulse delay, and stretched
exponential analysis (I / e�

t
Tmð Þβ , β = 2 ± 0.5) was then

employed to obtain corresponding Tm values.
Fig. 7 shows the obtained Tm(T ) dependences for 1Yb, 1Dy

and the reference compound of molecular structure

[KY(VO)2(cbdc)4(H2O)11]·2H2O (MY)
6a,16 with diamagnetic rare-

earth metal ion (see the ESI† for details and choice of MY). The
Tm(T ) dependence is observed to have a non-monotonous behav-
ior for 1Yb and 1Dy: the relaxation accelerates leading to a
decrease of Tm values, reaching minima at T ∼ 10–12 K.
Moreover, reference compound MY with diamagnetic YIII ion
shows perfectly monotonous dependence without such
peculiarity. Again, this means that the observed behavior for 1Yb
and 1Dy owes to the interactions between VIV and YbIII/DyIII. This
also confirms that the VIV–YbIII and VIV–DyIII units are present
when 1Yb and 1Dy are dissolved in water/glycerol, since otherwise
their Tm(T ) dependences would be similar to that ofMY.

In fact, such phenomenon is generally known in literature
and is called phase relaxation enhancement (PRE), i.e. an
increase of the relaxation rate (decrease of Tm) induced by a
partner spin coupled with observer spin by dipolar inter-
action.28 In compounds 1Yb and 1Dy, we deal with the spins of
two types – slow-relaxing S = 1/2 spins of VIV, and much faster
relaxing spins of YbIII or DyIII. If the spin of lanthanide ion

Table 7 The parameters of slow magnetic relaxation of the reported 3d-ErIII SMMs with paramagnetic 3d-metal ions

Compound
ErIII environment,
coordination polyhedron

Δeff/kB,
K (Hdc, Oe) τ0, s Ref.

{[FeIIIErIII(CN)6(2-PNO
[1])5]·4H2O}n ErN2O5, PBPY-7

a 43.55 (1000) 2.10 × 10−9 24a
(Et3NH)2[NiII2 Er

III
2 (OH)2(piv

[2])10] ErO8, SAPR-8
b 18 (1000) 3.9 × 10−6 3

[CuII
8 Er

III(OH)8(2-ma[3])8Cl2](ClO4)·21H2O ErO8, SAPR-8 22.9 (0) 4.74 × 10−7 24b
33 (1000) 9.48 × 10−6

[FeIII2 ErIII2 (OH)2(pmide[4])2(p-Me-benz[5])6]·2MeCN ErN2O6, SAPR-8 16.51 (1000) 2.03 × 10−7 24c
[CrIIIErIII6 (OH)8(o-tol

[6])12(NO3)(MeOH)5]·2MeOH ErO8, TDD-8
c 4.5 (3000) 9.1 × 10−8 24d

[NaErIII(VIVO)2(cbdc)4(H2O)10]n ErO8, TDD-8 19.2 (1000) 1.8 × 10−8 This work
[NiII4 Er

III(L[7])2(HL[7])2(MeCN)3Cl]·2H2O·2MeCN ErO8, TDD-8 31.87g (4000) 7.94 × 10−11 24e
[NiIIErIII(L[8])(OAc[9])(NO3)2(MeCN)]·MeCN ErO9, CSAPR-9

d 11.91 (1000) 5.12 × 10−8 24f
(NMe4)2[CuII

3 Er
III
2 (H3L

[10])2(NO3)7(MeOH)2](NO3) ErO9, CSAPR-9 14.8 (0) 1.2 × 10−7 24g
[FeIIIErIII{HB(pz)3}

[11](CN)3(NO3)2(pyim
[12])(Ph3PO

[13])]2·2MeCN ErN4O5, MFF-9e 57.6g (2500) — 24h
[NiIIErIII(L[14])2(NO3)3]·0.5H2O ErO10, JBCSAPR-10

f 12.1 (1000) 3.49 × 10−7 24i

[1]2-PNO = 2-picoline-N-oxide; [2]piv− = trimethylacetate; [3]2-ma = 2-methylalanine; [4]H2pmide = N-(2-pyridylmethyl)iminodiethanol; [5]p-Me-benz− =
4-methylbenzoate; [6]o-tol = o-toluate; [7]H3L = (E)-2-(hydroxymethyl)-6-(((2-hydroxyphenyl)imino)methyl)-4-methylphenol; [8]H2L = N,N′-dimethyl-N,N′-
bis(2-hydroxy-3-formyl-5-bromo-benzyl)ethylenediamine; [9]OAc− = acetate; [10]H6L = 2,2′-(propane-1,3-diyldiimino)bis[2-(hydroxylmethyl)propane-1,3-
diol]; [11]{HB(pz)3}

− = hydrotris(pyrazolyl)borate; [12]pyim = 2-(1H-imidazol-2-yl)pyridine; [13]Ph3PO = triphenylphosphineoxide; [14]HL = 3-methoxy-N-
[2-(methylsulfanyl)phenyl]salicylaldimine. a PBPY-7 = pentagonal bipyramid. b SAPR-8 = square antiprism. c TDD-8 = triangular dodecahedron.
dCSAPR-9 = capped square antiprism. eMFF-9 = muffin. f JBCSAPR-10 = bicapped square antiprism. gRecalculated from cm−1.

Table 8 The parameters of slow magnetic relaxation of the reported 3d-YbIII SMMs with paramagnetic 3d-metal ions

Compound
YbIII environment,
coordination polyhedron Δeff/kB, K (Hdc, Oe) τ0, s Ref.

{YbIII(4-pyridone)4[Fe
II(phen[1])2(CN)2]2}(OTf

[2])3·2MeCN YbN2O4, OC-6
a 12.5/800 7.28 × 10−6 25a

{YbIII(4-pyridone)4[Fe
II(phen)2(CN)2]2}(OTf)3·2AcrCN

[3] YbN2O4, OC-6 7.86/800 2.51 × 10−5 25a
{YbIII(4-pyridone)4[Fe

II(phen)2(CN)2]2}(OTf)3·2PrCN
[4] YbN2O4, OC-6 10.28/800 1.46 × 10−5 25a

{YbIII(4-pyridone)4[Fe
II(phen)2(CN)2]2}(OTf)3·2MalCN[5]·MeOH YbN2O4, OC-6 4.83/800 5.82 × 10−5 25a

[Na2YbIII
2 CuII

2 (OH)2(piv
[6])10(EtOH)2]·EtOH YbO8, SAPR-8

b 8.5/1000 2.1 × 10−6 14c
[YbIII{CuII

4 (butyrat
[7])4}2]Cl3·MeOH·26H2O YbO8, SAPR-8 6.84/1000 1.04 × 10−5 25b

[YbIIICuII
8 (OH)8(2-ma[8])8(Cl)2](ClO4)·21H2O YbO8, SAPR-8 22.5/700 1.48 × 10−8 24b

{[KYb(VO)2(cbdc)4(H2O)11]·2H2O}2 YbO8, TDD-8
c 23/2000 5.6 × 10−7 6a

[NaYb(VO)2(cbdc)4(H2O)10]n YbO8, TDD-8 44.8/2500 5.3 × 10−8 This work

[1]phen = 1,10-phenanthroline; [2]OTf− = trifluoromethanesulfonate; [3]AcrCN = acrylonitrile; [4]PrCN = propionitrile; [5]MalCN = malononitrile;
[6]piv− = trimethylacetate; [7]H2butyrat = 3-aminobutyric hydroxamic acid; [8]2-ma = 2-methylalanine. aOC-6 = octahedron. b SAPR-8 = square anti-
prism. c TDD-8 = triangular dodecahedron.
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relaxes (flips) much faster than that of vanadium, the dipolar
interaction will be averaged and no effect on vanadium EPR
should be observed.

This situation corresponds to CW EPR spectra of 1Yb and
1Dy at room temperature and to the Tm(T ) dependences at T >
30 K. In another limit, if (hypothetically) lanthanide spin
relaxed too slowly, there should be no PRE of the vanadium
spin as well (this situation is not reached experimentally).
However, at intermediate relaxation rate of the lanthanide
spins the influence of such fluctuations on the Tm value of
vanadium ion is anticipated, due to the dipolar coupling
between these ions. At the same time, CW EPR spectrum
should broaden due to the contribution of lanthanide.

Previous theoretical consideration of similar phenomena
derived general expression for the electron spin echo decay of
slow-relaxing spin in the presence of dipolarly-coupled fast-
relaxing spin (see ref. 28a):

Vθ¼0ð2τÞ ¼ chðRτÞ þW
R
shðRτÞ

� �2

þ A2ðrÞ
4R2 sh2ðRτÞ

� �
exp �2Wτð Þ;

ð1Þ

where R2 = W2 − A2(r)/4, W ¼ 1
2TLn

1
and Aðr12Þ ¼

g1zg2zβ2

ℏ
ð1� 3 cos2 θ12Þ

r123
with θ12 being the angle between ~r12

(~rVLn for the target compounds) and~B0. In particular, for R = 0,

which corresponds to the maximum PRE effect (minimum at
Tm(T ) dependence), the phase relaxation is enhanced up to:

1
Teff
m

¼ 1
TV
m
þ 1
TLn
1

ð2Þ

The eqn (2) qualitatively explains the behavior observed for
1Yb and 1Dy in Fig. 7. The analysis of experimental data allows
one to potentially obtain the unique information on spin relax-
ation times of the lanthanide ions, which are hardly available
otherwise being often too short to measure by EPR. However,
quantification of this approach requires more work. For
instance, eqn (2) should result in a decrease of Teff

m down to
≈TLn

1 , which can be estimated as ∼10 ns at PRE maximum

(TLn
1 � 1

AðrÞ and A(r) ∼ 200 MHz in point-dipole approximation

based on the crystal structures). This short Tm values are not
observed experimentally, meaning that more experimental
factors should be theoretically taken into account to describe
PRE in LnIII–VIV complexes. First, when 1Yb and 1Dy are dis-
solved for pulse EPR measurements, one should ensure that
there is only one type of spin pairs (or spin triads) present in
frozen solution, because if a part of the compound is fully dis-
solved and separate vanadium, and rare-earth blocks are
present, the apparent Tm(T ) will have two contributions which
should be treated properly. Second, a distribution over para-
meters TLn

1 and gz of the pairs (eqn (1)) should be significantly
broad29 and be treated accordingly. The other theoretical chal-
lenges are the proper introduction of an atom with strong
spin–orbit coupling (relevant for all lanthanides) into the
framework of the current PRE-theory and high sensitivity of Tm
to the minor changes in the environment.29 The optimization
of the theory might be the topic of our future study. At the
same time, the development of clear manifestations of PRE in
1Yb and 1Dy complexes potentially outlooks the use of such
phenomena in complex characterization of relaxation times in
molecular magnet candidates.

Fig. 6 CW EPR spectra of 1Dy, 1Yb and 1Y at 293 K and 10 K. Simulations
are shown in red.

Fig. 7 Tm(T ) dependences for 1Yb, 1Dy and the reference compound MY.
Solid line guides the eye.
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Conclusions

In the NaI–LnIII–VIV system (LnIII = Tb, Dy, Ho, Er, Tm, Yb)
with cyclobutane-1,1-dicarboxylate anions (cbdc2−), the lantha-
nide ionic radius was found to have no impact on the structure
of the resulting heterometallic compound. All six new LnIII–VIV

compounds obtained have the same 1D polymeric structure
formed by trinuclear anionic units [Ln(VO)2(cbdc)4(H2O)8]

−

linked by Na+ ions.
According to ac-magnetic susceptibility measurements, the

DyIII-, ErIII-, and YbIII-containing compounds showed field-
induced slow relaxation of magnetization. Slow magnetic relax-
ation observed can be best described by the sum of the Orbach
and Raman relaxation mechanisms for DyIII–VIV complex, the
sum of Raman and direct relaxation mechanisms for YbIII–VIV

complex, and only the Raman relaxation mechanism for ErIII–
VIV one.

For DyIII–VIV, two relaxation processes were suggested,
which may result from the independent relaxation of DyIII and
VIV centers and/or possible disorder of water molecules co-
ordinated to DyIII. For complexes with TbIII, HoIII, and TmIII

slow magnetic relaxation was not observed due to the possible
appearance of weak intramolecular and/or dipole–dipole
exchange interactions.

The ErIII-containing complex is the first representative of
heterometallic ErIII–VIV compounds exhibiting slow magnetic
relaxation.

For DyIII–VIV and YbIII–VIV studied by EPR spectroscopy, the
phenomenon of phase relaxation enhancement (PRE) was
observed, which can be used for complex characterization of
relaxation times in molecular magnet candidates.

Experimental
Materials and methods

New compounds were synthesized in air, using distilled water
as the solvent. Starting reagents included VOSO4·3H2O (>99%),
Ba(NO3)2 (>98%), cyclobutane-1,1-dicarboxylic acid (H2cbdc,
99%, Acros Organics), NaOH (>99%), Tb(NO3)3·6H2O (99.9%,
Lanhit), Dy(NO3)3·5H2O (99.9%, Lanhit), Ho(NO3)3·5H2O
(99.9%, Lanhit), Er(NO3)3·5H2O (99.9%, Lanhit), Tm
(NO3)3·5H2O (99.9%, Lanhit), Yb(NO3)3·5H2O (99.9%, Lanhit).

The infrared spectra of complexes 1Ln were recorded in the
frequency range of 4000–400 cm−1 on a PerkinElmer Spectrum
65 Fourier transform infrared spectrometer equipped with a
Quest ATR Accessory (Specac). Elemental analysis of the com-
pounds synthesized was carried out on a EuroEA 3000 CHNS
analyzer (EuroVector, S.p.A.).

The purity of compound samples was approved by powder
X-ray diffraction. The patterns were measured on a Bruker D8
Advance diffractometer with a LynxEye detector in the Bragg–
Brentano geometry, with the samples dispersed thinly on a
zero-background Si sample holder, λ(CuKα) = 1.54060 Å, θ/θ
scan with variable slits (beam length is 20 mm) in the 2θ-angle
range from 5° to 50°, with a step size of 0.020°.

The magnetic properties of compounds 1Ln were studied
in the dc- and ac-modes on a Quantum Design
PPMS-9 magnetometer in the temperature range of 2–300 K.
Dc-magnetic fields with an intensity of 0–5000 Oe and ac-mag-
netic fields with intensity of 5 Oe, 3 Oe and 1 Oe within fre-
quency ranges 10–100, 100–1000 and 1000–10 000 Hz, respect-
ively, were applied using standard procedure.30 All magnetic
behavior studies were performed using ground polycrystalline
samples, sealed in polyethylene bags and frozen in mineral oil
to prevent the orientation of crystallites in a magnetic field.
The paramagnetic component of the magnetic susceptibility
(χ) was determined taking into account the diamagnetic contri-
bution of the sample, evaluated from Pascal’s constant, and
the diamagnetic contributions of the mineral oil and the
sample holder.

All EPR data were collected using Bruker Elexsys E580
spectrometer at X-band (9 GHz) at the Center of Collective Use
“Mass spectrometric investigations” SB RAS. The spectrometer
was equipped with helium flow cryostat and temperature
control system (4–300 K). Continuous wave EPR spectra were
obtained on polycrystalline powder samples under conditions
avoiding microwave saturation and modulation broadening.
Phase memory time was measured using two-pulse Hahn elec-
tron spin echo sequence for glassy water/glycerol (C ∼ 0.2 mM)
solutions of target compounds. In all cases samples were
placed into quartz sample tubes and studied. Simulations were
performed using EasySpin.31

General synthesis procedure for [NaLn(VO)2(cbdc)4(H2O)10]n
(1Ln, Ln = Tb, Dy, Ho, Er, Tm, Yb). A weighed sample of
VOSO4·3H2O (0.100 g, 0.46 mmol) was dissolved in H2O
(15 mL), then Ba(NO3)2 (0.120 g, 0.46 mmol) was added, and
the reaction mixture was stirred for 20 min at 40 °C. The solu-
tion of Na2(cbdc) prepared by neutralization of H2cbdc
(0.133 g, 0.92 mmol) with NaOH (0.074 g, 1.84 mmol) in H2O
(10 mL) was added to the reaction mixture, and the stirring
was continued. After 10 min Ln(NO3)3·xH2O (m g, 0.46 mmol)
was added. The reaction mixture was stirred for additional
10 min and allowed to stand for 1 hour, then BaSO4 precipitate
was removed by filtration. The resulting blue solution (25 mL)
was allowed to evaporate slowly in air at 22 °C. X-ray quality
blue crystals were obtained within 2 months. The crystals were
separated from the mother liquor by filtration, washed with
cold H2O (t = 3 °C) and dried in air at 22 °C.

For 1Tb: x = 6, m = 0.208. The yield was 0.113 g (46.3%
based on VOSO4·3H2O). Anal. Calc for C24H44NaO28TbV2: C,
27.08; H, 4.17. Found: C, 27.01; H, 4.26%. IR (ATR), ν/cm−1:
3642 w, 3348 br. m [ν(O–H)], 3234 m [ν(O–H)], 3000 w [ν(C–H)],
2957 w [ν(C–H)], 1634 m, 1582 s [νas(COO

−)], 1555 s
[νas(COO

−)], 1443 m, 1431 m, 1391 s [νs(COO
−)], 1349 s,

1254 m, 1242 m, 1229 m [ν(C–C)cycle], 1195 w, 1162 w, 1122 m
[γ(C(–C)2)], 1061 w, 1012 w, 1000 w, 968 s [ν(VvO)], 952 s, 924
s, 875 w, 843 w, 807 w, 773 m, 762 m, 725 s [δ(COO−)], 647 s,
560 s, 533 s, 471 s, 444 s, 418 s.

For 1Dy: x = 5, y = 0.202. The yield was 0.118 g (47.8% based
on VOSO4·3H2O). Anal. Calc for C24H44DyNaO28V2: C, 26.99; H,
4.15. Found: C, 27.08; H, 4.20%. IR (ATR), ν/cm−1: 3641 vw,
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3351 br. m [ν(O–H)], 3229 m [ν(O–H)], 2999 w [ν(C–H)], 2956 w
[ν(C–H)], 1631 m, 1581 vs [νas(COO

−)], 1554 vs [νas(COO
−)],

1443 m, 1431 m, 1390 s [νs(COO
−)], 1348 s, 1254 m, 1242 m,

1229 m [ν(C–C)cycle], 1196 w, 1161 w, 1122 m [γ(C(–C)2)], 1061
w, 1012 w, 1000 w, 968 s [ν(VvO)], 952 s, 924 s, 874 w, 843 w,
807 w, 773 m, 762 m, 725 s [δ(COO−)], 649 vs, 604 s, 561 vs,
533 vs, 468 s, 450 vs, 440 vs, 415 s, 403 vs.

For 1Ho: x = 5, y = 0.203. The yield was 0.126 g (51.2% based
on VOSO4·3H2O). Anal. Calc for C24H44HoNaO28V2: C, 26.93;
H, 4.14. Found: C, 26.90; H, 4.19%. IR (ATR), ν/cm−1: 3641 vw,
3358 br. m [ν(O–H)], 3234 m [ν(O–H)], 3000 w [ν(C–H)], 2957 w
[ν(C–H)], 1634 m, 1580 s [νas(COO

−)], 1557 s [νas(COO
−)],

1443 m, 1431 m, 1391 s [νs(COO
−)], 1349 s, 1254 w, 1242 w,

1230 m [ν(C–C)cycle], 1193 w, 1162 w, 1123 m [γ(C(–C)2)], 1061
v.w, 1012 w, 1000 w, 968 s [ν(VvO)], 952 s, 924 m, 875 w, 843
w, 807 w, 773 m, 762 m, 725 s [δ(COO−)], 648 s, 561 s, 533 s,
470 s, 448 s, 438 s, 415 s, 403 vs.

For 1Er: x = 5, y = 0.204. The yield was 0.113 g (45.8% based
on VOSO4·3H2O). Anal. Calc for C24H44ErNaO28V2: C, 26.87; H,
4.13. Found: C, 26.79; H, 4.19%. IR (ATR), ν/cm−1: 3641 vw,
3356 br. m [ν(O–H)], 3234 m [ν(O–H)], 3000 w [ν(C–H)], 2957 w
[ν(C–H)], 1634 m, 1580 s [νas(COO

−)], 1555 s [νas(COO
−)],

1443 m, 1432 m, 1390 s [νs(COO
−)], 1348 s, 1254 m, 1242 m,

1229 m [ν(C–C)cycle], 1193 w, 1162 w, 1122 m [γ(C(–C)2)], 1063
w, 1012 w, 1000 w, 968 s [ν(VvO)], 953 m, 924 m, 875 w, 843
w, 807 w, 773 m, 762 m, 725 m [δ(COO−)], 650 s, 595 s, 561 s,
532 s, 467 s, 446 s, 437 s, 420 s, 407 vs.

For 1Tm: x = 5, y = 0.205. The yield was 0.077 g (31.2% based
on VOSO4·3H2O). Anal. Calc for C24H44NaO28TmV2: C, 26.83;
H, 4.13. Found: C, 26.94; H, 4.14%. IR (ATR), ν/cm−1: 3639 vw,
3352 br. m [ν(O–H)], 3238 m [ν(O–H)], 3000 w [ν(C–H)], 2956 w
[ν(C–H)], 1634 m, 1583 s [νas(COO

−)], 1557 s [νas(COO
−)],

1443 m, 1431 m, 1391 s [νs(COO
−)], 1348 s, 1254 m, 1242 m,

1229 m [ν(C–C)cycle], 1196 w, 1163 w, 1123 m [γ(C(–C)2)], 1063
w, 1012 w, 1000 w, 968 s [ν(VvO)], 953 s, 924 m, 874 w, 843 w,
807 w, 773 m, 765 m, 725 s [δ(COO−)], 653 s, 595 s, 561 s, 533
s, 471 s, 448 s, 423 s.

For 1Yb: x = 5, y = 0.207. The yield was 0.120 g (48.4% based
on VOSO4·3H2O). Anal. Calc for C24H44NaO28V2Yb: C, 26.73; H,
4.11. Found: C, 26.67; H, 4.08%. IR (ATR), ν/cm−1: 3639 vw,
3354 br. m [ν(O–H)], 3229 m [ν(O–H)], 3000 w [ν(C–H)], 2956 w
[ν(C–H)], 1634 m, 1582 s [νas(COO

−)], 1554 s [νas(COO
−)],

1443 m, 1431 m, 1391 s [νs(COO
−)], 1349 s, 1254 m, 1242 m,

1229 m [ν(C–C)cycle], 1196 w, 1162 w, 1123 m [γ(C(–C)2)], 1063
w, 1012 w, 1000 w, 968 s [ν(VvO)], 953 s, 924 m, 875 w, 843 w,
807 w, 773 m, 762 m, 726 s [δ(COO−)], 654 s, 561 s, 533 s, 466
s, 448 s, 440 s, 425 s, 416 s.

X-ray crystallography

The X-ray diffraction data sets for compounds 1Dy and 1Er were
collected on a Bruker SMART APEX II diffractometer equipped
with a CCD detector (Mo-Kα, λ = 0.71073 Å, graphite mono-
chromator).32 A semiempirical absorption correction was
applied using SADABS program.33 The structures were solved
by direct methods and refined by the full-matrix least squares
with anisotropic displacement parameters for non-hydrogen

atoms. The hydrogen atoms of the OH groups were determined
from the difference Fourier maps; with other hydrogen atoms
calculated geometrically and refined using a riding model. The
calculations were performed with the SHELX-2014 program
package34 via OLEX2 1.3 graphical user interface.35 The crystal-
lographic data for 1Dy, 1Er, and the structure refinement stat-
istics are given in Table 9.

CCDC 2266768 and 2266772† contain the supplementary
crystallographic data for 1Dy and 1Er.
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Table 9 Crystallographic parameters and structure refinement statistics
for compounds 1Dy and 1Er

Parameter 1Dy 1Er

Empirical formula C24H44DyNaO28V2 C24H44ErNaO28V2
Formula weight (g mol−1) 1067.96 1072.72
T (K) 150
Crystal system Monoclinic
Space group C2/c
a (Å) 9.097(2) 9.088(4)
b (Å) 24.739(5) 24.681(11)
c (Å) 17.116(3) 17.098(8)
β (°) 104.682(7) 104.589(8)
V (Å3) 3726.2(14) 3711(3)
Z 4 4
Dcalc (g cm−3) 1.904 1.920
θmin–θmax (°) 2.97–33.14 2.46–31.83
μ (mm−1) 2.59 2.85
No. of measured, independent
and observed [I > 2σ(I)]
reflections

7547, 3639, 3336 6910, 3159, 2796

Rint 0.026 0.040
GOF 1.045 1.036
R1

a, wR2
b (I > 2σ(I)) 0.0259, 0.0548 0.0405, 0.0991

R1
a, wR2

b (all data) 0.0298, 0.0567 0.0479, 0.1035
Tmin, Tmax 0.626, 0.747 0.456, 0.745
Δρmax, Δρmin (e Å−3) 0.99, −1.01 1.98, −1.34

a R1 = ∑||Fσ| − |Fc||/∑|Fo|.
bwR2 = [∑w(Fo

2 − Fc
2)2/∑w(Fo

2)2]1/2.
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2266768 and 2266772† numbers and can be obtained from
https://www.ccdc.cam.ac.uk/conts/retrieving.html.
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