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Decarbonization efforts across North America, Europe, and beyond rely on variable renewable energy sources

such as wind and solar, as well as alternative fuels, such as hydrogen, to support the sustainable energy

transition. These advancements have prompted a need for more flexibility in the electric grid to complement

non-dispatchable energy sources and increased demand from electrification. Integrated energy systems are well

suited to provide this flexibility, but conventional technoeconomic modeling paradigms neglect the time-varying

dynamic nature of the grid and thus undervalue resource flexibility. In this work, we develop a computational

optimization framework for dynamic market-based technoeconomic comparison of integrated energy systems

that coproduce low-carbon electricity and hydrogen (e.g., solid oxide fuel cells, solid oxide electrolysis) against

technologies that only produce electricity (e.g., natural gas combined cycle with carbon capture) or only

produce hydrogen. Our framework starts with rigorous physics-based process models, built in the open-source

Institute for the Design of Advanced Energy Systems (IDAES) modeling and optimization platform, for six energy

process concepts. Using these rigorous models and a workflow to optimally design each technology, the

framework is shown to be capable of evaluating new and emerging technologies in varying energy markets

under a plethora of future scenarios (i.e., renewables penetration, carbon tax, etc.). Ultimately, our framework

finds that solid oxide fuel cell-based coproduction systems achieve positive profits for 85% of the analyzed

market scenarios. From these market optimization results, we use multivariate linear regression (R2 values up to

0.99) to determine which electricity price statistics are most significant to predict the optimized annual profit of

each system. The proposed framework provides a powerful tool for directly comparing flexible, multi-product

energy process concepts to help discern optimal technology and integration options.

Broader context
Integrated energy systems (IESs) provide power grid flexibility by coupling multiple technologies and products to create more efficient and dynamically
responsive systems. Due to hydrogen’s anticipated role in decarbonization, we investigate the integration of electricity and hydrogen production via solid oxide
electrolysis. We develop a framework to directly compare technology options of varying flexibility and demonstrate its use via six process concepts. Our results
indicate that solid oxide fuel cell (SOFC) and solid oxide electrolyzer cell (SOEC)-based IESs have significant economic advantages over standalone fuel cells and
natural gas combined cycles. Integrated systems that coproduce electricity and hydrogen – SOFC + SOEC and reversible solid oxide cell (rSOC) – are profitable in
85% and the top performer in 74% of considered market scenarios. The SOFC and rSOC technologies also show extremely flexible performance in anticipated
market scenarios with high levels of variable renewable energy penetration. These findings strongly encourage research investments in SOFC and SOEC
technologies, especially flexible coproduction systems.
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1. Introduction

Broad efforts across the U.S. and beyond to decarbonize the
electric grid and energy-intensive industries have led to variable
renewable energy (VRE) sources such as solar and wind growing
faster than any other technology.1 VRE sources cannot control
their energy production beyond curtailment, which exacerbates
the difficulties in balancing supply and demand, often result-
ing in dramatic and undesirable ramping events for dispatch-
able generation resources which are generally designed for
baseload operations.2–4 This being said, alternate energy car-
riers such as hydrogen (H2) have been investigated to support
economy-wide decarbonization. Energy systems with increased
flexibility, which can respond quickly to supply and demand
imbalances, are needed to integrate VRE sources into the
electric grid while maintaining efficiency, cost competitiveness,
reliability, and resiliency. Integrated energy systems (IESs)
provide grid flexibility by exploiting synergies from combining
multiple technologies while switching rapidly between operat-
ing modes, e.g., switching from electricity to H2 production, in
response to grid demands. As a result of this increased flex-
ibility, IESs have been shown to have many benefits, including
lower costs5 and reduced emissions6 compared to prevailing
standalone technologies.

Prior work has highlighted the potential of H2 to decarbo-
nize multiple industrial sectors7–9 and support the transition to
higher VRE penetration.10–13 Bødal and colleagues showed that
joint planning of H2 and electricity production can reduce the
cost of grid expansion.14 Accounting for these benefits, H2

production is a great candidate for integration with electricity
production processes by offering additional grid flexibility and
an additional revenue opportunity for participants in increas-
ingly volatile power markets.

Fuel cell technologies are becoming increasingly popular for
power and H2 generation. In terms of electrical power, solid
oxide fuel cells (SOFCs) are particularly interesting, as they have
comparably better fuel flexibility, more capacity options, and
higher efficiency than other fuel cell types.15,16 Additionally,
while posing general operating challenges, their high-
temperature operation makes them an ideal candidate for
closely-coupled heat integration with other processes (i.e., H2

or liquid fuel) to improve overall process efficiencies.17 Prior
reviews highlight current deployments of SOFCs,18 the outlook
of SOFCs for grid-scale deployment and integration with other
systems,19 as well as current research in improving SOFC
technology, including materials advancements and systems
design.20

Low temperature fuel cell (LTFC) technologies of present
interest include alkaline fuel cell (AFC) and proton-exchange
membrane fuel cell (PEMFC) systems.21–24 AFCs and PEMFCs,
due to their short start-up times and portability, are generally
utilized for small-scale applications in the 1–500 kW range such
as backup power, transportation, and distributed generation.
However, carbon dioxide (CO2) severely limits the performance
and life of an AFC, while a PEMFC is susceptible to poisoning
from a variety of impurities including carbon monoxide.

Consequently, such systems cannot leverage a low-cost feed-
stock like natural gas without introducing pre-processing steps
to produce pure H2 fuel with significant adverse impacts on
overall system electrical efficiency. High temperature SOFC
systems, on the other hand, can produce power operating
directly on natural gas while utilizing both the process and
waste heat effectively to result in much higher system efficien-
cies relative to any of the LTFCs.16,25,26 SOFC systems are also
typically more electrically efficient than a molten carbon fuel
cell (MCFC), which operates at a slightly lower temperature
while eschewing the long-term durability implications of the
corrosive MCFC electrolyte.

Concomitantly, high temperature solid oxide electrolyzer
cell (SOEC) technologies can use both electricity and waste
heat to produce H2 at efficiencies that can be 25 percentage
points higher than low temperature proton exchange
membrane (PEM) electrolysis.27,28 These heightened efficien-
cies hold immense promise in reducing the electricity demand,
a primary cost driver in H2 production through electrolysis.
Additionally, achieving the ambitious hydrogen cost target of
1.00 $ kg�1, as outlined in the Department of Energys Hydrogen
Shot initiative,29 may necessitate such elevated efficiencies
given that PEM-based H2 production, even after optimizing
design and dynamic operation for time-varying electricity
prices, is well-above this threshold.30

Accordingly, the present study focuses on SOFC and SOEC
technologies with the potential to produce power and H2 at
high efficiencies, which along with the capability to operate
reversibly between the power and electrolysis modes can result
in higher round trip efficiencies (cycling between power and
electrolysis modes) than low temperature fuel cell technologies.
Additionally, their higher temperature operation and ability to
utilize waste heat make them particularly attractive for integra-
tion with existing technologies. There is a wide variety of prior
work on novel SOFC-based IES (SOFC-IES) concepts and differ-
ent technology options for these systems. Many of these works
focus on developing highly detailed, physics-based models of
the system and optimizing the steady-state operation for
increased efficiency,31–35 reduced costs,32,34,36 less environmen-
tal impact,36 and other objectives.32,34,35,37,38

Traditional cost optimizations often hinge on the levelized
cost of electricity (LCOE) or similar cost metrics. These static
methods have sufficed for the historical grid, dominated by
base-loaded systems. However, current and future grid optimi-
zation needs to consider the intermittency imposed by
increased VRE penetration and electrification. Instead of con-
sidering a time-varying operating profile, LCOE calculates the
system’s lifetime costs and divides them by an assumed life-
time electricity production to find a cost per unit of energy
produced.39 LCOE is one of the most popular technoeconomic
analysis (TEA) metrics because it is easy to calculate and
provides a means to compare power generation costs with
prices in different regions quickly. However, because LCOE
assumes a fixed capacity factor regardless of market dynamics,
it does not value system flexibility and is a poor predictor for
grid-parity for some technologies.40–42 As such, new TEA
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methods that go beyond LCOE and capture dynamic market
forces are needed to capture the value of flexibility, especially
for IESs.43–45 For example, Naeini et al.38 developed a detailed
model of SOFC cell degradation over time which optimized cell
size and cell replacement schedule for 20 years of the plant.
Through these models, they found that the mode of operation
of SOFCs significantly impacts LCOE. Glenk and colleagues
evaluated reversible power-to-gas systems46 and forecast tech-
nology cost and the efficiency of such technology46,47 finding
that even under current dynamic energy markets, power-to-gas
systems can be profitable. However, integration and retrofitting
with existing natural gas-based technologies and important
operational constraints (i.e., minimum production constraints,
minimum up and down time constraints) were not considered
and only two electricity markets (Germany and Texas) were
studied. To the authors’ knowledge, no prior studies have
systematically evaluated the operation of SOFC-IESs in the
context of a wide variety of both historical and forecast whole-
sale electricity market scenarios.

In this work, we address these gaps by developing a novel
computational optimization framework to predict the maxi-
mum possible profits of SOFC-IESs in the context of different
energy markets. We also address important operational deci-
sions such as minimum up and down times, minimum

operating loads, and modular coproduction that were not
considered previously.46,47 Using this framework, we directly
compare the performance of multiple process concepts, each
with 97% or greater carbon capture and storage (CCS), that
hybridize SOFCs or natural gas combined cycles (NGCCs) for
power generation with SOECs for H2 production. For each of
the six technologies (Fig. 1), we optimize their operation within
many historical and forecast real-time energy markets under
many carbon tax and renewables penetration conditions. We
find that SOFC and SOEC-based H2 production and coproduc-
tion IESs, even within historical conditions, provide a lucrative
option at high throughput, promoting research into the scale-
up of existing SOFC/SOEC technologies. As the framework
allows for direct comparison of economic performance of
energy process concepts, it has the potential to serve as a
powerful tool to assist in discerning optimal technology and
integration options for future energy system deployment and
strategically guide R&D investments in enabling the systems.

2. Methodology
2.1. Technology overview – process concepts

We compare six process concepts, shown in Fig. 1, that produce
electric power, H2, or both. The (1) standalone NGCC system

Fig. 1 Process flow diagrams of process concepts compared in this work. The left column contains single product systems, including electricity (NGCC
and SOFC) and H2 (SOEC) producers. The right column contains integrated concepts of those technologies. The top row are NGCC-based concepts, and
the bottom two rows are SOFC-based. Each concept is fitted with greater than 97% carbon capture. For more information on the models see ref. 48 and
49. Larger images of each process concept is included in the ESI† (S9).
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(Fig. 1 top-left) is based on case B31B in the U.S. Department of
Energy (DOE) National Energy Technology Laboratory (NETL)
fossil-energy baseline report50 and serves as a baseline for
comparison. The hybrid (2) NGCC + SOEC system (Fig. 1 top-
right) uses steam and electricity from the NGCC subsystem to
produce H2 instead of electricity when market prices are low.
The two NGCC-based concepts are equipped with a solvent-
based post-combustion carbon capture system operating at
97% capture. The (3) standalone SOFC (Fig. 1 middle-left)
and (4) standalone SOEC (Fig. 1 bottom-left) systems produce
power-only and H2-only, respectively. The (5) SOFC + SOEC
system (Fig. 1 bottom-right) has the flexibility to produce
power from the SOFC when electricity prices are high or utilize
some of the power, either from the SOFC or grid purchase, to
produce H2 when electricity prices are low. The (6) reversible
solid oxide cell (rSOC) system (Fig. 1 middle-right) is less
flexible, able to produce electricity and H2 separately but not
simultaneously.

The primary energy sources for all systems are natural gas,
grid electricity, or both depending on the mode of operation.
SOFC-based concepts assume complete internal reformation of
the natural gas and employ a cryogenic distillation process to
achieve at least 97% carbon capture. They are based on case
ANGFC3B of NETL’s natural gas fuel cells (NGFC) pathways
study.48 Capacities range from 650 MW to 712 MW for the
power generation systems, while the H2 generation capacities
are all 5 kg s�1. The H2 specification is 6.479 MPa with less
than 10 ppm water. Transport and storage costs for carbon
dioxide and H2 were deemed outside the scope of this analysis,
and tax credits for carbon sequestration or clean H2 production
are not considered. More information on how H2 transporta-
tion costs can be incorporated is included at the end of Section
3.4. The capital costing approach assumes successful research
and development and learning associated with mass-scale
commercial deployment of SOFC technology (i.e., nth-of-a-
kind plants) as previously described.48 Wherever possible, cost
assumptions from the NGFC pathways study were used for the
SOEC systems as well. Eslick et al.49 describes the process
concepts, costing assumptions, and modeling approach in
detail.

2.2. Modeling and optimization workflow

We utilize a multi-step computational framework to optimize
and evaluate (see Fig. 2) the economic performance of process
concepts (e.g., Fig. 1) and ultimately compare concepts against
one another in various dynamic electricity price market scenar-
ios. As described above, we start with rigorous steady-state
process models developed in the open-source IDAES modeling
and optimization platform.51 Then, algebraic surrogate models
are trained using data from these rigorous models to emulate
technology performance. Finally, these models, along with
operational constraints, are combined with historical or fore-
casted market prices to optimize annual operation. These
optimal operational schedules can then be compared to evalu-
ate which process concept and market signal pairings could
result in profitable investments.

2.3. Surrogate modeling

In this work, we go beyond the static LCOE analysis and include
dynamic price signals, which require a detailed IES model
(thousands of linear and nonlinear equations) at each hour.
The high detail of the IES model equations for each time period
(8760 hours in a one-year time horizon) make conventional
simultaneous equation-oriented optimization intractable for
year-long operational decision-making. Therefore, we train
algebraic surrogates of the detailed IES models of the six
process concepts using the Automatic Learning of Algebraic
Models (ALAMO) modeling tool52 (available within the IDAES
package). Training data were collected from the steady-state
IDAES process models, which optimize system operation to
minimize costs. Then, utilizing the IDAES surrogate application
programming interface (API), the ALAMO framework deter-
mines the best algebraic surrogate form based on Bayesian
information content and returns surrogate equations for fixed
costs, fuel costs, other variable costs (e.g., water and chemicals
purchasing, water treatment) and inequalities representing the
feasible operating region. The IDAES surrogate API provides
visualization, validation, and cross-validation to avoid over-
fitting. Fixed cost equations were obtained by calculating each
system’s capital costs over a range of feasible plant sizes and
fitting a power law equation to represent costs as a function of
plant size.49,53 For this analysis, equipment sizes were fixed to
650 MW net max power and 5 kg s�1 H2. Variable cost
equations (fuel and non-fuel) were developed by fitting a curve
to the optimized operating costs at different plant operating
points between the minimum turndown and maximum system
capacity. These cubic equations contain co-linear terms when
two products can be produced simultaneously (NGCC + SOEC
and SOFC + SOEC). R2 values between 0.97 and 1.0 indicate an
excellent fit (see ESI,† Table S6). For systems where electricity
and H2 coproduction are possible (i.e., SOFC + SOEC and NGCC
+ SOEC), we determine a feasible operating region for H2

production for each system based on simultaneous energy
production data and electricity purchase from the grid.

Besides improving computational tractability, the surrogate
cost equations facilitate rapid grid-parity assessments, similar
to an LCOE assessment. By taking the first derivative of cost
with respect to power or H2 output, we can determine marginal
cost for power or H2 at different operating points (or cost
incurred by producing one unit more of a product). In Fig. 2
box A, the left plot represents the marginal cost of power, and
the right plot represents the marginal cost of H2. The black
contours on the plot report the marginal cost, corresponding to
the colors on the grid behind it. The horizontal axis represents
power output, and the vertical axis represents H2 output. The
lighter shaded box represents the feasible operating range for
simultaneous coproduction of both products. Values outside
this range are within the system’s capacity but not feasible
coproduction outputs (meaning either H2 or power can be
produced at those levels but not both). These plots are a single
trend line instead of a surface for single output systems and
modes. Fig. S2–S8 (ESI†) report marginal costs of additional
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systems. Similarly, Fig. S9 and S10 (ESI†) use the cost surro-
gates to determine the mean electricity and H2 prices for
concepts to break even (analysis from ref. 49).

2.4. Curating market data

To analyze a diverse set of price markets, we collected 61
annual locational marginal price (LMP) signals to represent
historical, present, and future wholesale electricity market
scenarios. Table S7 in the ESI† summarizes these datasets,
including key statistics. Historical and present LMPs were
gathered from publicly available datasets published by inde-
pendent system operators (ISOs) and regional transmission
organizations (RTOs) across the United States, including
the California ISO (CAISO – NP15, ZP26, and SP15 regions);
Electric Reliability Council of Texas (ERCOT – North, South,
West, and Houston regions); ISO New England (ISO-NE); New
York ISO (NYISO); Midwest ISO (MISO – Indiana, Louisiana,
and Minnesota regions); and the Pennsylvania Jersey Maryland
Interconnection West, and Southwest Power Pool (SPP – North

and South regions).54 We used data from 2019 to represent
historical pricing (pre-COVID-19 pandemic) and data from 2022
to represent more current pricing trends. Natural gas prices for
each region were selected by taking the average spot price
reported by the Energy Information Administration.55 These
prices ranged from 2.39 to 10.79 $ MMBtu�1 across the differ-
ent regions.

We selected three price projection methods to represent
possible future market scenarios. These projected market sce-
narios contain low to high VRE penetration conditions, as well
as low to high carbon tax levels. First, projections from Durva-
sulu and Cohen56 used the National Renewable Energy Labor-
atory’s (NREL) Regional Energy Deployment System (ReEDS)
capacity planning tool57 and PLEXOS energy market simulation
platform58 to simulate five regions of the U.S. (CAISO, ERCOT,
MISO-W, NYISO, and PJM-W) under CO2 taxes of 100 and
150 $ tonne�1. Carbon taxes were implemented as increasing
trajectories from 0 $ tonne�1 to the target value to drive
capacity toward low carbon systems, but not allowing for CCS

Fig. 2 Framework for market optimization and technoeconomic analysis of process alternatives. (A) Algebraic surrogate models are trained from
rigorous nonlinear steady-state process optimization results from the IDAES-PSE framework. Analyzing the partial derivatives of these surrogate models
reveals the marginal costs of H2 and electricity for each system. (B) Past, present, and future hourly time-series electricity price data (historical, forecasts)
are collected for six U.S. wholesale markets: CAISO, ERCOT, MISO, NYISO, PJM, SPP. (C) Over one thousand instances of the multi-period optimization
problem (using the algebraic surrogates from box A) are solved to analyze all six energy process concepts using 61 electricity market scenarios and five
fixed H2 price scenarios. (D) Energy process concepts are compared using annual net profit, electricity and H2 capacity factors, and other performance
metrics. Linear regression analysis reveals which electricity market price statistics are most significant in predicting the annual net profit of each system.
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deployment to ensure LMPs were not affected. These price scenar-
ios assumed natural gas prices between 1 and 3 $ MMBtu�1,
depending on the region modeled. This dataset will be referred
to as ‘‘NREL (2035)’’.

Second, we considered projections by Jenkins et al.,59 which
utilized GenX60 and PowerGenome61 to simulate prices in a single
integrated planning model representing the U. S. under different
levels of VRE penetration and CO2 tax policies. All these projections
assumed a natural gas price of 2.94 $ MMBtu�1. This dataset will
be referred to as ‘‘Princeton (2030)’’.

Lastly, we performed a series of independent production
cost simulations for the ERCOT region covering 2033 through
2037, assuming a range of CO2 tax rates ranging from 0 to
250 $ tonne�1. This enabled the exercise of simulations for a
2035 study year with sufficient run-in and run-out periods to
ensure that unit commitment constraints did not artificially
impact the results. These projections assumed a natural gas
price of 4.42 $ MMBtu�1. See Section S1 (ESI†) for a detailed
explanation of these projections.62,63 This dataset will be
referred to as ‘‘NETL (2035)’’.

A summary of the market scenarios can be seen in Fig. 3. We
present the mean LMP value (panel (a)), the natural gas price

for that scenario (panel (b)), and the two multimodality tests
that were performed (see Section S4, ESI†) to indicate if a
market should be considered multimodal (panel (c)). If the
market passed both multimodality tests (above 1.0 in Fig. 3,
panel (c)), the market was considered to be multimodal. To
further visualize the price signal data from some of the mar-
kets, 25 of the 61 markets (5 from each reference) are shown as
histograms in ESI,† Fig. S16.

While H2 is expected to be a key energy carrier in decarbo-
nized economies, H2 markets remain in their infancy, currently
dominated by private bilateral contracts between suppliers and
consumers. Instead of speculating on the structure of future H2

markets, we selected five static H2 selling prices between 1.00
and 3.00 $ kg�1 and performed a sensitivity analysis. In
2019, the International Energy Agency (IEA) reported the
global average levelized cost of H2 (LCOH) to be from 1.20 to
2.10 $ kg�1 for production from natural gas (via steam methane
reforming (SMR)) and 3.2 to 7.7 $ kg�1 for renewables-based
electrolysis.64 More recently, an NETL report estimated LCOH
of 1.64 $ kg�1 for SMR with CCS, 1.59 $ kg�1 for auto thermal
reforming (ATR) with CCS, 3.09 $ kg�1 for coal gasification with
CCS, and 3.64 $ kg�1 for a coal and biomass co-gasification

Fig. 3 Summary statistics of the market characteristics with respect to (a) mean LMP, (b) natural gas price, and (c) multimodality test statistics. For market
signal modality, only those that have both statistics above the normalized threshold are considered to be multimodal (indicated with markers). Markets
have been broken down by reference and are sorted by increasing mean LMP.
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system with CCS.65 This is part of a broader DOE goal to reduce
the cost of clean H2 to 1.00 $ kg�1 by 2030.29 Additional work
has highlighted paths to achieve this goal, including integrat-
ing clean H2 production with other energy systems.29,66 Based
on these guidelines, we select a nominal H2 selling price of
2.00 $ kg�1 and analyze additional prices of 1.00, 1.50, 2.50, and
3.00 $ kg�1 for each of the 61 LMP signals. This results in 305
different market scenarios assessed for each of the six process
concepts.

We note the nominal H2 selling pricing is the selling price
after taking into account both the transportation and storage
costs and possible tax credits. Thus, this analysis allows tech-
nologies to be evaluated by how much net profit is required
from each kilogram of H2 produced to justify technology
investment. Nevertheless, we note that H2 transport and sto-
rage costs can vary widely depending on the chosen technolo-
gies. For example, whereas salt cavern storage coupled to
pipeline transport may add as little as $0.2 kg�1 to the cost of
H2, further compressing the H2, storing it in a tank, and
transporting it by truck can add more than ten times that
amount.67 Thus, we chose not to embed these costs directly
into the optimization formulation to facilitate interpretation of
the results. The sensitivity of the results to variation in H2

transport and storage costs can be explored, however, by
comparing results generated assuming different selling prices
of H2. Alternatively, one can directly incorporate these costs
into the optimization problem (Section 3.5). However, since we
consider that H2 price is static for the reasons given above,
incorporation of static transportation and storage costs will
lead to consistent conclusions.

2.5. Optimizing process concept operation

Proper valuation of the process concepts requires computing
the optimal time-varying operation that responds to the fluc-
tuations in market conditions. For each of the six process
concepts and 305 market scenarios (1830 total scenarios), we
solve a mixed-integer nonlinear programming (MINLP) optimi-
zation problem with the following general structure:

Maximize Electricity revenue + H2 revenue � system costs
(algebraic surrogates) � carbon taxes

Subject to Profit model constraints (algebraic surrogates),
operating mode integer constraints, startup and
shutdown costs and logic, minimum up and down
time constraints, feasible operating constraints
(algebraic surrogates)

The optimization degrees of freedom (decision variables) are
the hourly power and H2 production rates (continuous vari-
ables) and the operating decisions (discrete variables). The
objective is to maximize the system’s profit over the annual
planning horizon. The electricity and H2 revenues are calcu-
lated by multiplying the production rates by the respective

hourly prices. The system costs are calculated using an alge-
braic surrogate model (see Section 3.3). We define a set of
possible operating modes for each system, depending on the
process concept’s flexibility. Possible modes include off (no
output), power only, H2 only, or coproduction (producing both
power and H2 simultaneously). A set of operating mode integer
constraints enforces operation within the feasible region of the
active mode at each operational time step. The systems are also
subject to startup and shutdown costs, as well as time limits for
how long a system must be down before starting back up again
or up before it can shut down again.68 For coproduction
systems, we also include feasible operating region constraints,
in the form of linear inequalities, that bound system power
production rate as a function of H2 production rate. This
optimization formulation assumes the new system is operating
as a price-taker meaning the addition of the modeled system
does not significantly affect the LMPs or energy system
makeup.69 See Fig. 2 box C (middle) for an example hourly
operation schedule.

A detailed description and statement of the mathematical
formulation used to solve these market scenarios is included in
ESI,† Section S2. Therein, the MINLP is presented in detail with
descriptions of each variable, set, and equation, as well as the
solution procedure and solver tools used to optimize each
MINLP instance.

2.6. Comparing system performance

The output of the optimization model is the best annual profit
and system operating schedule, which includes hourly electri-
city and H2 production rates, as well as the best time to switch
between operating modes, startups, and shutdowns. Fig. 2 box
C (middle) shows an example system output. The red line
depicts the hourly dispatch schedule, and the blue dots repre-
sent the LMPs plotted against the hour. When the LMP (blue
dots) are low, the system chooses to shut down, and when the
LMP is higher (typically, above the system’s marginal costs),
power is produced at its maximum capacity. The red lines may
dip below zero power output for coproduction systems or H2-
only systems, indicating a net purchase of electricity from the
grid. A supplemental spreadsheet provides the annualized
profit optimization results for each system and scenario and
several dashboard-like plots that automatically update as the
data are filtered and sorted.

Using these data, we perform statistical analysis to compare
the economic performance across process concepts under each
scenario. Fig. 2 box D (bottom) depicts the percentage of
scenarios for each case that result in a positive profit for all
scenarios with a H2 selling price of 2.00 $ kg�1. Analyses like
this plot allow us to observe which systems are most robust
to variation in market conditions. Moreover, we perform
multivariate linear regression to correlate the system’s
optimal profit to market features such as natural gas price,
carbon taxes, H2 price, and LMP statistics (e.g., mean, median,
multimodality,70–73 unimodality, etc.74,75). Ultimately, this ana-
lysis helps us distill 1830 annual operation optimization results
into a concise set of key findings about the relative economic
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competitiveness of the process concepts across diverse market
scenarios.

3. Results
3.1 SOFC outperforms existing NGCC systems

Fig. 4 shows optimization results for all 61 market price signals
at the nominal H2 price of 2.00 $ kg�1 for each process concept.
Price scenarios are plotted by name along the horizontal axis
and are divided into groups by source (see Section 2.4). The
vertical axis shows the optimal annual profit, H2 capacity factor,
and power capacity factor calculated in our rigorous optimiza-
tion framework. High capacity factors stem from operating
procedures that keep the process on and, while on, running
near maximum capacity for a large part of the operating year.
Technologies without H2 (NGCC, and SOFC) or power produc-
tion (SOEC) will have a capacity factor of 0 for the missing
process output. Scenarios within each source are sorted by
increasing annual profit for the SOFC process concept to make

comparison more clear. Versions of these plots at all the H2

selling prices, are in the ESI† (Fig. S11–S14).
From Fig. 4, we see that the standalone SOFC concept

always outperforms the standalone NGCC. Additionally,
whereas the SOFC system achieves a positive profit in 52% of
the examined market scenarios, the NGCC achieves a positive
profit in only 13%. This is due to the anticipated higher
efficiency and lower capital cost for SOFC-based power plants
with CCS compared to NGCC-based power plants with CCS
leading to a lower LCOE. Also, SOFC has a higher power
capacity factor than NGCC in every scenario analyzed, many
times exceeding a 40% capacity factor increase (see Fig. 4 and
ESI,† Fig. S11–S14). This dramatic result indicates that SOFC-
based power plants can produce power at profit under signifi-
cantly more market conditions than NGCC-based power plants.
Also, at the nominal H2 price, the SOFC-based integrated
systems and SOEC-based hydrogen producing system have
positive profits in nearly all scenarios (97%, 98%, and 74%,
respectively).

Fig. 4 Optimized annual profits for all analyzed electricity price signals at a nominal H2 selling price of 2.00 $ kg�1. Price signals are separated by source
and, within each source, sorted by SOFC annual profit. Also, panels (b) and (c) display the H2 and power capacity factors for the given optimal operating
solution, respectively. Names of market signals are the region followed by the carbon tax for future scenarios (i.e., ERCOT_100 from the NREL (2035) data
set is the ERCOT region with a carbon tax of 100 $ tonne�1).
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3.2. H2 price sensitivity analysis

Fig. 5 summarizes all 1830 process concept/market scenario
pairs as a panel of histograms. Each histogram contains the
optimal annual profit data from all 61 market scenarios at a
given H2 price. Each column represents a different H2 price,
and each row represents a unique process concept. As H2

increases across a row, profit either stays the same if the system
produces only power (i.e., NGCC and SOFC) or increases if the
system can produce H2 (i.e., SOEC, rSOC, NGCC + SOEC, SOFC
+ SOEC) for a given market scenario. The flexibility is obvious
for the rSOC and SOFC + SOEC process concepts as almost all
LMP signals result in profitability with a H2 price at or above
2.00 $ kg�1 (Fig. 5, rows 3, 4 and 5). Also, the benefit of adapting
a NGCC system with an additional SOEC unit becomes clear at
higher H2 prices. Finally, the SOEC profitability is on average
increasing, but the spread of profitability also grows, indicating
that although a standalone SOEC is quite profitable in many
scenarios at high H2 prices, there are still a handful scenarios
where little to no profit, or even losses, can occur.

Table 1 summarizes these histograms in terms of the
percentage of profitable market scenarios for each technology
at each H2 price is available. This table highlights the large
benefit of integrated systems (rSOC and SOFC + SOEC), even at
low H2 prices. Even at the DOE target price of 1.00 $ kg�1 H2,
rSOC and SOFC + SOEC IESs are profitable in 54% and 46% of
scenarios, respectively. Also, Table 1 reiterates that moving
from NGCC systems to SOFC systems (both with 97% carbon
capture) would result in significantly more profitable scenarios
(from 13% with NGCC to 54% with SOFC). Finally, integrating
current NGCC systems with an SOEC (NGCC + SOEC) results in
profitability only when H2 exceeds a price of 2.00 $ kg�1,

indicating that simply adding an SOEC to an existing NGCC
does not result in enough H2 production to outweigh the
capital investment at low H2 prices.

3.3. Integrated IESs exploit multimodal LMP signals to
increase profit

The increasing prevalence of VRE sources is shifting the
distribution of LMPs away from Gaussian and similar unim-
odal distributions toward multimodal distributions with peri-
ods of very low76 (near zero or negative) prices and extreme
prices, resulting in LMP distributions with two local maxima
rather than one. Fig. 2 box B (top right) contains a histogram
depicting a multimodal price distribution of a LMP signal. In
wholesale electricity markets, LMPs are determined by a market
clearing process where projected demand is assessed and
subsequently met in order of increasing cost.77,78 This means
low (or zero) marginal cost power production, like VRE sources
(e.g., solar and wind), are cleared before higher marginal cost
resources (e.g., NGCCs). The highest system marginal cost
selected determines the LMP for a specific period. Specifically,

Fig. 5 Optimized annual profits for each process concept at each H2 price presented as histograms. The height of the bars indicates how many
scenarios achieve a profit in the range indicated by the horizontal axis profit values. Each column has the same H2 price, and each row is the same
technology. Break even lines (solid black) and mean profit over all scenarios for a given H2 price and process concept (dashed line) are shown for
reference. As H2 price increases, system profitability increases for H2 production.

Table 1 Percentage of LMP scenarios each process concept achieves
positive annual profits aggregated by H2 selling price

Process concept
1.00 $
kg�1

1.50 $
kg�1

2.00 $
kg�1

2.50 $
kg�1

3.00 $
kg�1

NGCC 13% 13% 13% 13% 13%
SOFC 54% 54% 54% 54% 54%
NGCC + SOEC 8% 11% 16% 62% 80%
rSOC 54% 77% 97% 100% 100%
SOFC + SOEC 46% 79% 98% 100% 100%
SOEC 10% 49% 74% 87% 98%
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under high VRE penetration, periods of ultra-low LMPs stem
from abundant, low-cost renewable supply and high LMPs stem
from limited supply of wind and solar, leaving only more
expensive options to meet demand.79 As states across the U.S.
move toward achieving renewables portfolio standard targets,
multimodal price signals could become more common. Thus,
analyzing systems that thrive under these conditions is increas-
ingly important.

In markets that are considered strongly multimodal (see
Section S5, ESI†), there is a high concentration of low electricity
prices and high electricity prices around distribution modes.
The scenarios that exhibited multimodal behavior were future
scenarios from the NREL (2035)56 and Princeton (2030)59

datasets where prediction of higher renewables penetration
leads to periods of inexpensive, and sometimes negative, power
costs (see Fig. 3, panel (c)) in addition to price spikes during
peak hours. For market distributions visualization for 5 mar-
kets from each reference, see Fig. S16 (ESI†) (multimodal
distributions in orange and unimodal in blue).

Fig. 6 shows that the integrated SOFC + SOEC IESs enjoy
higher profits when compared with standalone process con-
cepts (e.g., SOFC and SOEC, respectively) within the same price
market. This benefit is amplified within multimodal price
markets (Fig. 6, orange portion of bars). The benefit is ampli-
fied because the integrated system can take advantage of high
electricity prices (produce power only) and low electricity prices
(produce hydrogen only), whereas the standalone systems can
only operate in a single product space. The conclusion of

integrated systems benefiting from multimodality generalizes
also to the NGCC + SOEC system (see Fig. S17, ESI†).

Fig. 7 shows the strong correlation of all process concepts
with mean LMP, except SOEC. For the integrated technologies
(right side of Fig. 7), the benefit from the multimodal scenarios
(orange stars) is much greater than the benefit of multimodality
within the standalone systems (left side of Fig. 7). This is
because both peaks of a multimodal price signal can be taken
advantage of by the integrated systems, i.e., H2 production at
low energy prices and power production at high energy prices.
The standalone technologies can only take advantage of one of
these peaks.

3.4. Linear regression predicts annual profit using market
statistics across all scenarios

Finally, we train multivariate linear regression models to pre-
dict the maximum annual profit calculated from each optimi-
zation problem based on statistics of the input market data.
Full regression coefficients (Table S5), feature correlation
(Fig. S1), and methodological description (Sections S4 and S5)
are available in the ESI.† Fig. 8 shows the parity between the
regression model predictions (vertical axes) and rigorous mar-
ket optimization results (horizontal axes). The high R2 values
ranging from 0.88 to 0.99 and tight trending indicates a good
fit. The SOEC (Fig. 8 bottom left) has a dip at lower profit
values. This is explained because the lower bound (system
always off) has total cost normalized at �0.82, resulting in a
barrier in realizable losses even though the linear model
predicts more losses.

Examination of the linear regression coefficients further
bolsters three key conclusions from the figures above. First,
the rSOC process concept is much more sensitive to carbon tax
than the other systems, as shown in regression coefficient
Table S5 (ESI†). This is seen in Fig. 4 and in ESI,† Fig. S11–S14.
At high hydrogen prices, electricity is more profitable to pro-
duce when the carbon tax is high, and at low hydrogen prices,
electricity is more profitable to produce when carbon tax is low
(note the power capacity factor, especially for the NREL (2035)
reference). The integrated systems have less dependence
because the feasible region to coproduce diminishes the ben-
efit of single-product operation that the rSOC gains in these
specific markets.

Second, the integrated process concepts (e.g., SOFC + SOEC
and NGCC + SOEC) have a higher dependence on natural gas
price. This can also be seen in Fig. 4 and ESI,† Fig. S11–S14,
where the scenarios with high natural gas price (see Fig. 3, 2022
prices) show high variability in production capacity factor. The
higher variability in H2 price for the 2022 scenarios leads to
significantly higher dependence on natural gas price, which is a
differentiating factor between the 2022 scenarios and other
scenarios.

Lastly, H2 price has a lower impact on rSOC profit than the
other H2-producing process concepts. This is explained by
coproducing IESs (e.g., SOFC + SOEC and NGCC + SOEC)
and H2 only IESs (e.g., SOEC standalone) have higher H2

capacity factors. The rSOC system has market conditions where

Fig. 6 Here, the difference in optimized annual profits for standalone
SOFC (top) and SOEC (bottom) process concepts when compared with
the SOFC + SOEC integrated process concept is shown at a H2 price of
2.00 $ kg�1. The height of the bars indicates how many scenarios achieve a
profit improvement through integration. Break even line is shown for
reference (solid black). Multimodal scenarios are labeled differently to
demonstrate that multimodal scenarios see large profit differences.
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producing only power is better than H2 because the integrated
systems can coproduce H2 using self-produced power, which
can exceed the marginal benefit of purchasing power from the
grid. These three conclusions justify holistic analysis that
includes optimizing individual systems alongside regression
or other comparative studies to uncover subtle conclusions.

3.5. Power and H2 operational recommendations from
marginal utility

From these results, we observe most units exhibit ‘‘on-and-off’’
dispatch. For a traditional thermal generator, it is either at full
capacity (LMP is greater than the marginal cost of power) or off
(LMP is less than the marginal cost of power). In Fig. S2–S8
(ESI†), we visualize the marginal cost for power and hydrogen
for all the IESs. We hypothesize based on these data that it
would be possible to extract simple heuristics that explain
based on price when a unit should be producing power or
hydrogen, coproduction, or neither, similar to the analysis in
ref. 80.

4. Discussion

This analysis demonstrates the compelling advantages of co-
generating electricity and H2 in a tightly coupled IES across
diverse market scenarios. The economic performance of both
NGCC and SOFC technologies is significantly enhanced
through integration with H2 production, thereby creating a

promising path toward the production of low-cost, low-carbon
H2 that aligns with the DOE’s hydrogen shot objective of
achieving clean H2 for less than 1.00 $ kg�1 within a
decade.29 The analysis reveals that the SOFC + SOEC system
is profitable in 45% of the tested market scenarios with H2

capacity factors as high as 0.8 (4126 M kg year�1 for a
5.0 kg s�1 capacity H2 system). Similarly, the rSOC could
profitably sell H2 at a price point of 1.00 $ kg�1 in 54% of the
market scenarios, with H2 capacity factors as high as 0.68
(4107 M kg year�1 for a 5.0 kg s�1 H2 system). Moreover, one
of the integrated systems that coproduce electricity and H2 –
SOFC + SOEC or rSOC – is the top performer in 74% of
the considered market scenarios. To summarize the entire
analysis, Table 1 reports the percentage of LMP scenarios
that achieve positive profits for each process concept and H2

selling price. These results clearly demonstrate the economic
advantage of SOFC-IESs across a wide range of market scenar-
ios. In addition, the IES concepts described herein enable
higher annualized profits than similarly scaled SMR and ATR
processes with CCS in scenarios with high natural gas prices
(i.e., all 2022 scenarios), multimodal electricity pricing (i.e.,
all56 scenarios), or unimodal electricity pricing scenarios
with high carbon taxes (e.g., all scenarios with a carbon tax of
100 $ tonne�1 and greater) as can be seen in the supplemental
spreadsheet. Though beyond this study’s scope, such systems’
value propositions could be enhanced even further through tax
credits for carbon sequestration (45Q) and clean H2

production (45V).

Fig. 7 Optimized annual profits for each technology at an H2 price of 2.00 $ kg�1 plotted against the mean of the LMP signal distribution. The orange
stars represent points that passed two multimodal tests and are considered multimodal, and the blue circles represents the markets that did not pass both
tests. Higher mean LMP leads to higher profit in all process concepts except SOEC.
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Furthermore, the capabilities of our computational optimi-
zation framework have allowed us to directly compare a
variety of process concepts and draw important conclusions.
Along with these technology comparison results, we emphasize
that this framework is generalizable beyond fuel cells,
electrolysis, and even H2. The methodology we have employed,
starting with detailed physics-based models (currently abun-
dant in literature) or cost equations from any source and
solving tractable market optimization problems, applies to
many IES concepts with technologies including VRE sources,
grid-scale storage, chemicals production, and residential heat-
ing and cooling. Based on our analysis, this work could be
extended to explore the profitability of retrofit concepts instead

of new construction concepts. Extensions to our market
model may include analyzing faster timescales, such as real-
time markets or ancillary service markets where prices are
more volatile,44,81,82 and considering equipment degradation
over longer time horizons.45,83,84 Also, we only consider
static H2 selling prices (Section 2.4). One may improve this
framework by including dynamic H2 pricing alongside
dynamic transportation and storage costs. Finally, embedding
this framework within analyses that include impact of the
IES participating in the market (e.g., ref. 44) would
improve the conclusions and prevent overestimating the ben-
efit of emerging power generation and coproduction
technologies.

Fig. 8 Parity between linear regression model and market optimization results for all six process concepts. Black stars represent a market that appears to
be an outlier: the NETL scenario with carbon tax of 250 $ kg�1 which results in high volatility and extreme prices.
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5. Experimental procedures
5.1 Resource availability

5.1.1 Lead contact. Further information and requests
for resources and materials should be directed to and will
be fulfilled by the lead contact, Prof. Alexander Dowling
(adowling@nd.edu).

5.1.2 Materials availability. This study did not generate
new unique materials.

5.1.3 Data and code availability. Description and sources
of all LMP data can be found in Section 3.4 of this work. A more
detailed description of how internal price projections were
made is included in Section S1 (ESI†). Additional information
about the IES concept process modeling can be found in ref. 49.
IES concept models were generated in the IDAES-PSE open-
source modeling platform51 version 2.0 which can be obtained
for free on GitHub (https://github.com/IDAES/idaes-pse). Tools
used for surrogate generation and market optimization model-
ing, including ALAMO version 2022.6.4, are available as part of
the IDAES modeling platform. The market optimization model
was built in Pyomo version 6.5.0 and solved using GAMS 41.3
with Dicopt 2. Visit https://github.com/IDAES/publications/ for
all code used to generate the results presented in this work.
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