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Leveraging the chemical data available in legacy formats such as publications and patents is a significant

challenge for the community. Automated reaction mining offers a promising solution to unleash this

knowledge into a learnable digital form and therefore help expedite materials and reaction discovery.

However, existing reaction mining toolkits are limited to single input modalities (text or images) and

cannot effectively integrate heterogeneous data that is scattered across text, tables, and figures. In this

work, we go beyond single input modalities and explore multimodal large language models (MLLMs) for

the analysis of diverse data inputs for automated electrosynthesis reaction mining. We compiled a test

dataset of 65 articles (MERMES-T24 set) and employed it to benchmark five prominent MLLMs against

two critical tasks: (i) reaction diagram parsing and (ii) resolving cross-modality data interdependencies.

The frontrunner MLLM achieved $96% accuracy in both tasks, with the strategic integration of single-

shot visual prompts and image pre-processing techniques. We integrate this capability into a toolkit

named MERMES (multimodal reaction mining pipeline for electrosynthesis). Our toolkit functions as an

end-to-end MLLM-powered pipeline that integrates article retrieval, information extraction and

multimodal analysis for streamlining and automating knowledge extraction. This work lays the

groundwork for the increased utilization of MLLMs to accelerate the digitization of chemistry knowledge

for data-driven research.
Introduction

Despite today's increasingly data-driven scientic landscape,
most of the past chemical knowledge remains locked in one way
or another, using legacy data formats such as the hypertext
markup language (HTML) and portable document format
(PDF), or hidden behind paywalls. One way forward is the
automated data mining from these “locked” scientic data
onto, Lash Miller Chemical Laboratories,

, Canada. E-mail: alan@aspuru.com

emistry, School of Chemistry, Chemical

Technological University, 21 Nanyang

y of Toronto, Sandford Fleming Building,

nto, Canada

1 University Ave. Suite 710, ONM5G 1M1,

M5S 3H6, Toronto, Canada

ing, University of Toronto, 184 College St.,

lied Chemistry, University of Toronto, 200

vanced Research (CIFAR), 661 University

tion (ESI) available. See DOI:

the Royal Society of Chemistry
stemming from publications and patents. If fully automated,
this task would be essential to help construct databases which
can be leveraged as collective knowledge to signicantly expe-
dite materials and reaction discovery and uncover fundamental
governing chemistries.1–13 Despite advancements in specialized
text mining or diagram parsing tools,14–18 extracting accurate
and comprehensive experimental data records remains chal-
lenging due to at least twomain hurdles: (i) key chemical and/or
materials information is usually scattered across various data
modalities within both the main text and ESI,† including tables,
gures/schemes, and textual descriptions and (ii) the user-
desired data is typically overwhelmed by a substantial amount
of extraneous content, i.e., “data ooding”. These two chal-
lenges underscore the need for robust yet exible data mining
workows capable of multimodal analysis, while efficiently
ltering and processing the specialized data at hand.

Recently, large language models (LLMs) such as Claude,19,20

Gemini,21 GPT22 and LLaMA23 among others24,25 have demon-
strated immense potential in text-based knowledge extraction
from scientic publications, using a combination of prompt
engineering, model ne-tuning and in-context learning
techniques.3,22,26–40 Compared to traditional natural language
processing (NLP) methods that rely heavily on rule-based syntax
or dictionary-matching, LLM-powered literature mining
exhibits higher adaptability and generalizability due to the
Chem. Sci., 2024, 15, 17881–17891 | 17881
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natural language processing, conversational capabilities, and
general-purpose versatility of LLMs. Nonetheless, the integra-
tion of visual information poses an additional layer of
complexity. The emergent development of multimodal large
language models (MLLMs), with the ability to receive and
process multiple data types including images, text, language,
audio, and other heterogeneity, offers a more well-rounded
task-solver.41–44 These MLLMs have reported promising accura-
cies in various vision-language multimodal tasks such as image
captioning and visual question-answering in generic everyday
context, across different evaluation benchmarks. The next
logical question for us arises: can state-of-the-art MLLMs
effectively process and integrate textual and visual inputs from
scientic literature for specialized, domain-specic tasks such
as reaction mining?
Fig. 1 [Task overview] An example of a typical figure depicting the overall
The figure is a non-copyrighted image drawn by the authors for illustrat
mining: (A) reaction diagram parsing and (B) resolving cross-modality da
substrate-specific information that are presented in non-standardized fo

17882 | Chem. Sci., 2024, 15, 17881–17891
In this study, we demonstrate that MLLMs exhibit multi-
modal cognition capabilities that are suitable for chemical
applications. We focus on two essential subtasks in automated
reaction mining. The rst subtask involves parsing reaction
conditions into categorical data (10 different categories), which
is a requirement due to the conventional use of graphical
representations to summarize novel reactions (Fig. 1A). The
second subtask involves resolving cross-modality interdepen-
dencies, where reference labels within gure images are dened
elsewhere in the text (Fig. 1B). This capability is also required
since substrate-specic variations in reaction conditions are
typically conveyed through such index cross-references. Being
able to identify and connect these distributed pieces of infor-
mation together is thus crucial to maintain data coherency and
integrity during the automated mining process. Using 65
reaction diagram and substrate scope, with the corresponding caption.
ive purposes. We highlight two key challenges of automated reaction
ta interdependency in terms of footnote cross-references. In addition,
rmats across figures may also be present.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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literature articles reporting novel organic electrosynthesis
reactions as our proof-of-concept test dataset, we evaluated the
zero-shot performances of ve prominent MLLMs, namely GPT-
4V,22 Gemini Pro,21 Claude 3,19 InternVL45 and LLaVA.46,47 The
resulting frontrunner model (GPT-4V) was selected for further
performance renement through strategic incorporation of
single-shot visual prompts and automated image cropping.
Finally, we developed an integrated tool called MERMES,
a Multimodal Reaction Mining pipeline for ElectroSynthesis,
which is an end-to-end automated workow that effectively
leverages multimodal information from scientic publications
for automated reaction mining. MERMES features three
sequential modules: an article retrieval module to download
HTML webpages from the publisher, an information extraction
module to extract all image–caption pairs from incoming liter-
ature articles and identify the relevant gure images, and
a multimodal information analysis module to extract the key
chemical information from the ltered data subset. We
envisage that these MLLM-based automated reaction mining
workows play an integral role towards the complete digitiza-
tion of chemistry knowledge to facilitate data-driven research.
Methodology
Study scope and overview of knowledge retrieval tasks

This work focuses onmining organic electrosynthesis reactions.
The recent renaissance of this eld as an efficient and
sustainable alternative to traditional chemical syntheses has led
to the growth of scientic literature on novel electrosynthesis
reactions.48–50 To expedite the electrication of industrially-
relevant organic reactions by enabling data-driven investiga-
tions of various parameter–property relationships such as yields
and selectivities across the high-dimensional parameter and
compound spaces, it is necessary to create a unied and
structured electrosynthesis reaction database and leverage
existing literature as past collective knowledge.

To evaluate the multimodal cognition ability of the MLLMs
to assist in knowledge retrieval from scientic literature, we
investigated two essential subtasks within automated electro-
synthesis reaction mining. The rst subtask consists of the
extraction of reaction conditions from reaction schemes
(Fig. 1A). This is a specialized task which requires domain
knowledge and context-awareness to interpret symbolic repre-
sentations, such as electrode polarity indicators, and to ensure
accurate role assignment, such as distinguishing between an
electrolyte and solvent. The second subtask is that of resolving
cross-modality data interdependencies (Fig. 1B), where refer-
ence labels within gure images are dened elsewhere in the
text. This capability is important since substrate-specic varia-
tions in reaction conditions are typically conveyed through
footnote cross-references. Being able to identify and connect
these distributed pieces of information is essential to maintain
the coherency and integrity of the mined data. We would like to
clarify that the subtask of image-to-SMILES translation is
beyond the scope of this work because there are numerous
available rule-based and deep-learning based toolkits including
© 2024 The Author(s). Published by the Royal Society of Chemistry
DECIMER, SwinOCSR and MolNexTR with high reported accu-
racy rates.51–53

Evaluation dataset (MERMES-T24) construction

To benchmark our selected models, we manually curated a test
dataset comprising 65 literature articles reporting new organic
electrosynthesis reactions, published across 16 peer-reviewed
journals to ensure diversity of writing and graphic presenta-
tion styles (full DOI list in Table S1†). We named this dataset
MERMES-T24 for further reference by other researchers. Only
articles that reported on batch reactions in undivided cells were
considered within the scope of this study. The papers, pub-
lished between February 2017 and December 2023, were
downloaded in HTML format, and the image–caption pairs
were compiled individually. Out of the 475 image–caption pairs,
we identied 87 pairs that were relevant to our dened tasks (i.e.
reaction diagram schemes depicting standard electrosynthesis
conditions and/or demonstrating cross-modality
interdependency).

Multimodal large language model (MLLM) selection

We selected ve state-of-the-art MLLMs for preliminary evalu-
ation of their zero-shot performances in our specied tasks,
namely GPT-4V (gpt-4-vision-preview),22 Gemini Pro (gemini-
1.0-pro),21 Claude 3 (Claude 3 Opus),19 InternVL (InternVL-chat-
v1.2-chinese-plus)45 and LLaVA (LLaVA-v1.6-34b).46,47 All ve
MLLMs are autoregressive language models based on the
transformer architecture. We chose these models because they
previously demonstrated comparable performances onmultiple
text-image multimodal evaluation tasks including DocVQA,54

ChartQA,55 AI2D56 and MME.57 In addition, researchers can
access these tools through various application programming
interfaces (APIs) or by downloading their models, which include
pre-trained weights. This accessibility simplies their integra-
tion into our nal automated reaction mining pipeline.

Results and discussion
Subtask 1: electrosynthesis reaction diagram parsing

The formal prompt for subtask 1 consists of three main parts: (i)
instructions to identify and categorize as the following 10
reaction parameters, namely the anode, cathode, electrolytes/
additives, amounts of electrolytes/additives, solvents, amounts
of solvents, current, duration, air/inert atmosphere, and
temperature, (ii) succinct contextual information, and (iii)
single-shot visual examples (Fig. 2). The latter two parts serve to
pre-condition the MLLM for our domain-specic task. In addi-
tion, the prompt also instructs the MLLM to include any other
related reaction parameter that does not fall under the pre-
dened categories in a separate “Others” column, to accom-
modate more complex reactions. To minimize hallucinations,
we have adopted prompt engineering strategies that have been
previously reported.29,58 Within this framework, the models are
directed to set any specic parameter to “N.R. (not reported)” if
they cannot nd the relevant information in the supplied image
and/or caption.
Chem. Sci., 2024, 15, 17881–17891 | 17883
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Fig. 2 [Single-shot visual prompting for electrosynthesis reaction diagram parsing] The full prompt used in this subtask for electrosynthesis
reaction diagram parsing is provided. The example images are adapted with permission from ref. 59 and ref. 60, with permission from the Royal
Society of Chemistry.
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We analysed the results of reaction diagram parsing using
two evaluation metrics with different tolerance levels: (i) hard
match evaluation requires the correct matching of reaction
parameters with their intended role, while (ii) so match eval-
uation requires only correct identication of the parameter,
regardless of its role. For instance, an anode material annotated
as the cathode, or solvents classied as electrolytes/additives
are considered incorrect under hard match evaluation but
correct under so match evaluation. Accurate hard matches for
the anode and cathode material are especially critical for
automated electrosynthesis reaction mining because swapping
the electrode polarity would inuence the actual yield and
selectivity. In addition, it is important to note that we do not
accommodate partial answers for reactions involving mixed
solvent systems and/or multiple electrolytes/additives across
both evaluation metrics. In other words, the identied param-
eter is only considered “correct” when all reported solvents/
electrolytes/additives are present.

The outcomes of our preliminary evaluation of the zero-shot
performances of the ve MLLMs, summarized in Fig. 3A, reveal
that GPT-4V surpasses the others in both hard and so match
evaluations (detailed discussion in ESI Note 1; supplementary
17884 | Chem. Sci., 2024, 15, 17881–17891
evaluation metrics provided in Tables S2–S5†). Given its strong
performance, we chose GPT-4V for further renement. The
model's hard match accuracy was lowest for the identication of
solvents and electrode materials (both cathode and anode), with
scores of 83% and 85% respectively (Fig. 3A). In the case of
solvents, misclassication primarily arises from mis-labelling
solvents as electrolytes, in which the model achieved excellent
100% so-match accuracy (Fig. 3A). For electrode classication,
we deconvoluted the model's performance based on the
presentation style of the electrode systems, categorized into four
categories based on whether the anode and cathode materials
are explicitly indicated by their respective polarities or inferred
schematically from circuit symbols (Fig. 3B-i). While the model
achieved 100% accuracy for the rst two styles, its performance
dropped to 75–78% and 70% for styles 3 and 4, respectively
(Fig. 3B-iii). We hypothesize that these two styles are poorly
predicted due to their ambiguous representations, which
necessitate prior understanding of the commonly employed
chemical nomenclature. In this regard, we demonstrate the
effectiveness of single-shot visual prompting in boosting the
“chemical-awareness” of the MLLM for improved adaptability to
specialized image mining tasks. By providing single-shot
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 [Performance evaluation of electrosynthesis reaction diagram parsing] (A) % hard match (soft match) identification accuracy for each
parameter using different MLLMs and two specialized reaction diagram parsing toolkits previously reported, as benchmarks. For the benchmark
models, only the soft match scores are tabulated because the different categories are not specified. The highest scores for each category are in
green. (B) Evaluation of the effectiveness of single-shot visual prompts. (i) Examples of different reaction diagram presentation styles. The %
distribution of each style within our dataset is included in brackets. The example images are adapted with permission from ref. 61 (style 1), ref. 59
(style 2), ref. 60 (style 3), and ref. 62 (style 4), with permission from the Royal Society of Chemistry. (ii) % of correctly identified for each reaction
parameter category with and without the integration of single-shot visual prompts. Categories 1–10 refer to anode, cathode, electrolytes/
additives, amounts of electrolytes/additives, solvents, amounts of solvents, current, duration, air/inert atmosphere, and temperature, respec-
tively. (iii) % of correctly identified anode and cathode material for each presentation style under hard match evaluation.
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examples of a representative reaction diagram from each
presentation style before analysing the actual dataset, we
observed notable improvements to 100% and 89% for the latter
two styles, boosting the overall hard match electrode accuracy to
99% (Fig. 3B-ii and iii; Tables S6 and S7†). In addition, hard
match accuracies for all other parameter categories also reached
© 2024 The Author(s). Published by the Royal Society of Chemistry
near-unity (Fig. 3B-ii). Importantly, the model is robust against
more intricate scenarios, such as those involving mixed solvent
systems and/or multiple electrolytes and additives (present in
57% of investigated reaction diagrams), or in instances where
multiple units such as ratio, % mol, mmol and molarity are
utilized (present in all investigated reaction diagrams).
Chem. Sci., 2024, 15, 17881–17891 | 17885
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To further evaluate our MLLM workow, we benchmarked
its performance against ReactionDataExtractor2.0 (ref. 14) and
RxnScribe,18 two established deep-learning based toolkits for
reaction diagram parsing. Notably, the frontrunner MLLM
demonstrated superior performance in interpreting electro-
synthesis reaction diagrams, which the aforementioned toolkits
struggled to parse accurately. Although both ReactionDataEx-
tractor2.0 and RxnScribe are designed for single-line chemical
reaction diagrams resembling those in our study, they achieved
so match accuracies ranging from 23–36% to 50–99% on our
test dataset, respectively (Fig. 3A). The poor performance of
ReactionDataExtractor2.0 across all categories is due to its
failure at identifying the regions with reaction conditions for
most of the reaction diagrams, despite accurately identifying
the location and direction of the reaction arrows (ESI Note 2†).
On the other hand, we observe that although RxnScribe can
accurately identify standard parameters such as duration and
temperature with >90% accuracy, domain-specic information
such as the electrode materials and the electrolytes are poorly
identied, whereby RxnScribe makes mistakes such as missing
one or both electrode materials (ESI Note 2†). Since Reac-
tionDataExtractor2.0 and RxnScribe are specialized toolkits
designed at recognizing organic reaction schemes, this limits
their ability to extrapolate beyond familiar data, making them
less effective at interpreting annotations specic to electrosyn-
thesis reactions in our MERMES-T24 dataset, which are outside
their design focus. This thus emphasizes the key advantage of
general-purpose models, which have the capability to interpret
symbolic cues with in-context learning that is straightforward to
implement at low training costs and eliminates the need for
rewriting programs or retraining models each time the target
chemical application changes.
Subtask 2: resolving cross-modality interdependency

The formal prompt for subtask 2 contains succinct contextual
information to pre-condition the MLLM to recognize the
correlations between superscript letters (found in the gure)
and footnote references (found in the caption) (full prompt in
Fig. S1†). In addition, the prompt also instructs the MLLM to
identify substrate-specic information including the corre-
sponding yields (as index–yield pairs) and other additional
details that are related to the investigated reaction (as a separate
“Others” column). These additional details can vary in terms of
contents, ranging from diastereomeric and product ratios to
reaction durations. From the initial data subset, we further
identify image–caption pairs that demonstrate such cross-
modality interdependency (74 in total). Each model prediction
was assigned as follows: true positive for correct identication
of index–yield or footnote references; false positive for incorrect
assignment or redundant information; true negative for correct
identication of compounds without reported yields or footnote
references; and false negative for missing information. It is
worth noting that certain compounds may be associated with
multiple yields and/or footnote references, which further
increases the task complexity. In these cases, we do not
accommodate partial answers and the prediction is only
17886 | Chem. Sci., 2024, 15, 17881–17891
assigned as a “true positive” when all associated yields and/or
footnote references are correctly identied.

Instead of providing the raw images, we cropped each gure
into smaller subgures using an in-house automated image
cropper code released as part of MERMES before collectively
passing these subgures into the model to extract the infor-
mation (Fig. 4). Using GPT-4V as the test model, we demonstrate
that incorporating image cropping as an additional pre-
processing step prior to multimodal analysis of substrate scope
diagrams effectively improved the overall recall of footnote
cross-references from 73% to 96%, while maintaining excellent
precision and specicity at$96% (Fig. 5A-i; ESI Note 3†). This is
because the model is prone to overlooking footnote cross-
references (i.e. higher false negative counts) when the lines of
information within the gure are densely packed, such as in the
case of Markush structures with varying R substituents, where
individual recall scores of each gure can fall below 20%
(Fig. 5A-ii and S4; Table S8†). The incorporation of image
cropping is thus useful to circumvent information overload or
neglect, with only minor trade-offs in terms of current service
cost (∼$0.039 USD versus ∼$0.034 USD per gure with and
without image cropping for GPT-4V), and execution time (∼33.7
seconds per gure versus ∼328.6 seconds per gure with and
without image cropping for GPT-4V). Comparing across
different MLLMs, GPT-4V outperforms the other models by 6–
90% and 10–90% for precision and recall, respectively, attaining
an excellent F1 score of 96% (Fig. 5A-i; Tables S9–S13†). In
particular, InternVL and LLaVA oen fail to identify the pres-
ence of superscript letters, resulting in high false negative
counts. In comparison, Gemini and Claude 3 can accurately
identify the presence of superscript letters in the gures and
match them with the corresponding footnote references in the
caption; however, they struggle in instances with multiple
superscript letters associated with the same product.

As for the identication of substrate-specic information,
GPT-4V, Gemini and Claude 3 achieve excellent performances,
attaining 99% recall of the index–yield pairs, and high overall
precision, recall and specicity of $94% at identifying addi-
tional substrate-specic information (Fig. 5B; Tables S14–S20†).
In comparison, LLaVA and InternVL oen make mistakes such
as incorrect identication of diastereomeric ratios, e.g. report-
ing as “1.2.1” instead of “1 : 2.1” or failure to identify the pres-
ence of any substrate-specic information. They also struggle to
interpret index labels denoted by double alphabet letters (e.g.,
3ab, 3ac, 2az) (Tables S21–S24†). At the same time, we observe
that they are more prone to hallucinations and would provide
false information such as giving additional index–yield pairs
beyond the provided substrate scope.
MERMES: multimodal reaction mining pipeline for
electrosynthesis

Leveraging our ndings, we developed an end-to-end workow
towards automated reaction mining. Modelling the cognitive
process of a human scientist during literature reading, our
workow features three sequential modules to perform the
following: article retrieval, information extraction and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 [Image cropping prior to multimodal analysis] Schematic overview of image cropping prior to multimodal analysis. The figure is a non-
copyrighted image drawn by the authors for illustrative purposes.

Fig. 5 [Performance evaluation for parsing of substrate scope information] (A) (i) Performance evaluation of different MLLMs at resolving cross-
modality data interdependencies. The highest scores for each evaluation metric are in green. (ii) Comparison of individual recall scores for
resolving footnote cross-referencing in each figure with and without image cropping, using GPT-4V model as the test model. Figures with low
recall scores <80% are indicated. (B) Performance evaluation of different MLLMs at identifying (i) index–yield pairs and (ii) additional substrate-
specific information. The highest scores for each evaluation metric are in green.

© 2024 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2024, 15, 17881–17891 | 17887
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Fig. 6 Schematic illustration of multimodal pipeline for automated reaction mining featuring three sequential steps: article retrieval, information
extraction, and multimodal analysis of filtered information.
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multimodal analysis. Our automated workow is designed to
process articles in HTML format, which offers standardized,
machine-readable document structure to facilitate automated
data extraction. In brief, the article retrieval module initiates the
job by downloading content and high-resolution images from
the URLs of the articles (Step 1 in Fig. 6). Next, the information
extraction module extracts the image–caption pairs and iden-
ties those of relevance to our dened task viaMLLM, guided by
user-provided natural language prompts (Step 2 in Fig. 6). The
ltered image–caption pairs are directed to the nal multi-
modal analysis module, where the pertinent chemical infor-
mation is extracted by natural language prompts (Step 3 in
Fig. 6). When analysing the gures, we adopt the similar
strategy to crop the gure into smaller subgures parts to
ensure the performance of the MLLM. We note that our
framework can be easily extended to process other data
contents in the article. Our future work will include extending
the pipeline to efficiently mine other document formats, such as
PDF, which remains challenging for machines to parse and sort
the data. The full code is available in GitHub: https://
www.github.com/aspuru-guzik-group/MERMES.
Conclusions

We demonstrate that multimodal large language models are
capable of chemistry-relevant multimodal cognition skills to
interpret and assimilate electrosynthesis information from
scientic publications. Our ndings reveal that the strategic
integration of text-based preconditioning prompts and single-
shot visual prompts for in-context learning enables MLLMs to
grasp domain-specic concepts for accurate parameter identi-
cation and role assignment, achieving $99% accuracy across
10 different parameter categories for the frontrunner MLLM. At
the same time, they can resolve cross-modality data interde-
pendency with excellent F1 scores of $96%, while offering
enough exibility to handle disparate amounts of information
to extract additional, non-standardized details not consistently
reported across all gures. This level of accuracy signicantly
17888 | Chem. Sci., 2024, 15, 17881–17891
surpasses the 80% benchmark for manual data extraction by
humans.63 We developed a toolkit (MERMES) for carrying out
these tasks, serving as a multimodal pipeline for automated
reaction mining from scientic publications. Moving forward,
we will equip MERMES with additional capabilities such as
image-to-SMILES translation and utilize MERMES to create
a comprehensive electrosynthesis reaction database as an
invaluable data resource for numerous potential downstream
applications from computer-aided reaction discovery and opti-
mization, reaction prediction and other predictive tasks. From
a broader perspective, by exemplifying the potential of har-
nessing multimodal large language models in (electro)chemical
information processing, we envisage that MLLM-based reaction
mining workows such as MERMES will open new opportuni-
ties for data-driven research across numerous domains.
Data availability

The source code of our automated workow extraction code,
MERMES, together with additional data mining scripts, can be
found in our Github repository (https://www.github.com/
aspuru-guzik-group/MERMES). To improve the reproducibility
of this work, a frozen version of the repository has been
uploaded to Zenodo (https://doi.org/10.5281/
zenodo.12713560).64 The prompts used in this work, together
with the raw responses from the tested MLLM models are
compiled and uploaded to Zenodo (https://doi.org/10.5281/
zenodo.12701834) for data transparency and reproducibility.65
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