Journal of Materials Chemistry A

PAPER

Cite this: J. Mater. Chem. A, 2024, 12, 1218

Received 18th September 2023 Accepted 9th November 2023

DOI: 10.1039/d3ta05652j

rsc.li/materials-a

1. Introduction

The excessive emission of $CO₂$ breaks the balance of the natural carbon cycle;¹ therefore, it is urgent to develop new technologies for $CO₂$ recycling and utilization to realize the sustainable development of resources and energy, and mitigate global warming. The electrochemical CO_2 reduction reaction (CO_2RR) coupled with renewable electric energy can not only synthesize high-value-added products from $CO₂$ but also realize energy

$SiO₂$ assisted $Cu⁰-Cu⁺-NH₂$ composite interfaces for efficient $CO₂$ electroreduction to $C₂₊$ products†

Zi-Yang Zhang, ‡^a Hao [Tian](http://orcid.org/0000-0001-5701-0945), ‡^a Han Jiao,^a Xin [Wan](http://orcid.org/0000-0001-7854-927X)g,^a Lei Bian,^a Yuan Liu, D^a Nithima Khaorapapong, \mathbb{D}^6 Yusuke Yamauchi \mathbb{D}^{cde} and Zhong-Li Wang $\mathbb{D}^{\star a}$

The electrochemical CO₂ reduction reaction (CO₂RR) for high value-added multi-carbon product (C₂₊) production over copper oxide-based catalysts is an important way to realize the carbon cycle. However, developing effective reaction interfaces and microenvironments to improve the Faraday efficiency (FE) and current density of C_{2+} remains a major challenge. Herein, we construct $\mathsf{Cu}^0\text{-}\mathsf{Cu}^+$ –NH₂ composite interfaces with the assistance of $SiO₂$. Using Cu₂O nanoparticles as a model catalyst, a layer of porous $SiO₂$ is first coated on the surface of the particles, and then, a silane coupling agent containing $-NH₂$ is bonded on the surface of $SiO₂$. The strong interaction between $SiO₂$ and $Cu₂O$ at the interface induces the oxidation effect of low valent Cu, and even under the CO_2RR , part of Cu⁺ is reduced to Cu⁰ and part of Cu⁺ still maintains positive valence, forming the interface of Cu⁰–Cu⁺. SiO₂ also acts as a bridge between copper species and $-NH₂$ to create a Cu catalyst–NH₂ group interface. With the help of the synergistic effect of the composite interfaces, the optimized Cu₂O@SiO₂–NH₂ catalyst achieves a FE of 81.2% for C₂₊ products with a current density of 292 mA cm⁻² at -1.7 V versus a reversible hydrogen electrode. In situ Raman and attenuate total reflectance-infrared absorption spectroscopy spectra show that the interaction between surface $-NH₂$ and CO₂ molecules enhances the adsorption and activation process of CO_2 and promotes the formation of CO intermediates (*CO). On the Cu⁰-Cu⁺ interface, the C–C coupling process between *CO is accelerated, and the two interfaces synergistically promote the generation of C_{2+} products. This work provides a new strategy for constructing composite interfaces to improve the $CO₂RR$ to $C₂₊$ products. PAPER
 CO₂ assisted Cu⁰ --Cu⁺ --NH₂ composite interface

Composite interface

Composite interface

Co₂ absorted on 202₂₁ Droduction to C₂₊ product

This is the second of the decoration records the determina

storage at the same time, which is a promising way of $CO₂$ utilization.^{2,3} Up to now, it has been reported that at least 16 distinct products are formed from the $CO₂RR$, such as CO , $CH₄$, HCOOH, C_2H_4 , C_2H_5OH , C_3H_7OH , and so on.^{4,5} Among the $CO₂RR$ products, $C₂₊$ can be used as a chemical raw material and fuel, leading to wide application.^{1,6} Consequently, researchers have made significant endeavors in the synthesis of C_{2+} through the CO₂RR. However, CO₂ is a linear and inert molecule with a C=O bond energy of up to 750 kJ mol⁻¹.⁷ Thus, achieving $C=O$ activation under milder conditions requires the use of appropriate catalysts. Currently reported catalysts for $CO₂RR$ synthesis of $C₂₊$ products are mainly Cu-based catalysts, because they have a moderate adsorption strength for C_1 intermediates in the $CO₂RR$ process, which is neither too strong for desorption nor too weak for further adsorption activation for subsequent reactions, to promote the dimerization between C_1 intermediates and generate C_{2+} products.^{1,8}

Among Cu-based catalysts, the oxides of Cu and their derivatives are an important type of catalyst with high reactivity.⁹⁻¹¹ During the reduction and reconstruction process, abundant metal-oxide $(Cu^{0}-Cu^{\delta+})$ interfaces are generated for Cu oxides, which significantly enhance the activity of the catalysts and improve the rate of C–C coupling.¹² Therefore, their

ROYAL SOCIETY
OF CHEMISTRY

a Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. E-mail: wang. zhongli@tju.edu.cn

^bMaterials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

c Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia

^dDepartment of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464–8603 Japan

e Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul, 03722 South Korea

[†] Electronic supplementary information (ESI) available. See DOI: <https://doi.org/10.1039/d3ta05652j>

[‡] The authors contributed equally to this work.

electronic structure¹³ and morphology^{14,15} have been widely studied to improve the activity of the CO_2RR to C_{2+} products. Especially, recent studies have found that the adsorption strength of the CO intermediate (*CO) on Cu^{δ +} species (0 < δ < 2) is stronger than that on Cu^{0} species at the metal-oxide interface,^{16–18} which is beneficial to increase the concentration of *CO on the catalyst surface and promote the *CO dimerization step. Therefore, it is important to improve the stability of $Cu^{δ+}$ species under reduction conditions to produce C_{2+} products. For example, Zhou et al.¹⁶ reported a B-doped Cu catalyst to regulate the local electronic structure of Cu and improve the stability of positive valence Cu. Consequently, the adsorption and dimerization of *CO can be controlled by adjusting the average oxidation valence of Cu, which makes the Cu(B) catalyst achieve 79% faradaic efficiency (FE) of C_2 in the CO₂RR process. In addition, Yan et al.¹⁹ reported a hexagonal boron nitride (h-BN) modified $Cu₂O$ catalyst, where the strong electron interaction between the two components of $Cu₂O$ and BN makes the electrons on Cu₂O transfer to BN to strengthen the Cu–O bond, thus stabilizing the Cu⁺ species during the CO₂RR. Upon applying the Cu₂O-BN catalyst for the CO₂RR process, the ratio of C_2H_4/CO increased by 1.62 times compared with that of the $Cu₂O$ catalyst. Similarly, Zang et al.²⁰ designed a carbon-coated CuO_x (CuO_x@C) catalyst and the carbon layer on the catalyst surface effectively stabilized Cu⁺ species, thereby facilitating the C–C coupling process. In the $CO₂RR$ process, the FE of ethanol reached 46%, and the partial current density reached 166 mA cm−² . A series of studies have proven that the interfaces between Cu⁺ and Cu⁰ regions could promote C_{2+} production. Additionally, organic molecules containing amino groups (– $NH₂$) are often used as surface modifiers to regulate the surface properties of catalysts, thereby altering the reaction microenvironment during the CO_2 RR. Li et al.²¹ constructed a molecular–catalyst interface by modifying a layer of an N-aryldihydropyridine-based oligomer on the surface of the Cu catalyst, which made the catalyst exhibit excellent ethylene selectivity with an FE of 72% at −0.83 V versus the reversible hydrogen electrode (vs. RHE; the same potential scale is used in the following discussion unless otherwise specified) during the $CO₂RR$. Similarly, Chen et al.²² incorporated polyamine on Cu electrodes. Due to the strong binding force between the $CO₂/CO$ molecule and –NH2, the polyamine–Cu interface formed a microenvironment with locally high concentrations of $CO₂$ and CO, which accelerates the formation of ethylene and the FE reached 72% at −0.97 V. According to the above discussion, the $Cu⁰-Cu⁺$ reaction interface and $-NH₂$ induced molecular-catalyst interface both can promote the formation of C_{2+} products in the $CO₂RR$. Poper

Poper

decretoric structure" and morphology"" have been widely catalyst-8H₃ group interface. We have fully utilized two characted

structure in eactivity of the Co.QRN too C₃ productive accertation of morphology

The widely suggested CO_2 -to- C_{2+} conversion mechanisms show that the promoted $CO₂$ activation, the faster formation and adsorption of the C_1 intermediate, and the accelerated C–C coupling process are essential to increase the selectivity of C_{2+} products. However, developing a reaction interface that simultaneously meets the requirements of three aspects still faces great challenges. In this work, we construct a $\rm Cu^0\text{-}Cu^+ \text{-}NH_2$ composite reaction interface with the assistance of $SiO₂$, which includes both the Cu-based $Cu⁰-Cu⁺$ interface and the Cu

catalyst-NH₂ group interface. We have fully utilized two characteristics of amorphous $SiO₂$: firstly, it can uniformly coat inorganic nanoparticles, and secondly, it can bond with silane coupling agents to introduce organic functional groups. Using $Cu₂O$ nanoparticles as a model catalyst, a layer of porous $SiO₂$ is first coated on the surface of the particles (named $Cu₂O@SiO₂$). Under the conditions of electrochemical reduction, part of Cu⁺ is reduced to $Cu⁰$, and part of $Cu⁺$ maintains positive valence under the strong interaction of $SiO₂$, forming the interface of Cu⁰-Cu⁺. Then, a silane coupling agent containing -NH₂ is bonded on the surface of $SiO₂$ (named $Cu₂O@SiO₂–NH₂$), and the $SiO₂$ coating acts as a bridge between copper species and - $NH₂$ to form a Cu catalyst–NH₂ group interface. With the help of the synergistic effect of the Cu⁰-Cu⁺-NH₂ composite interfaces, the optimized $Cu₂O@SiO₂-NH₂$ catalyst achieves a selectivity of 81.2% for C_{2+} products at a current density of 292 mA cm⁻² at −1.7 V (without iR compensation). In situ Raman and attenuate total reflectance-infrared absorption spectroscopy (ATR-IRAS) spectra show that the interaction between surface $-NH₂$ and $CO₂$ molecules enhances the adsorption and activation process of $CO₂$ and promotes the formation of *CO , which increases the local concentration of surface *CO. On the Cu⁰-Cu⁺ interface, the C–C coupling process between *CO is accelerated, and the two interfaces synergistically promote the generation of C_{2+} products. This work provides a new strategy for constructing composite interfaces to promote the $CO₂RR$ to $C₂₊$ product conversion under high current density.

2. Experimental section

2.1 Materials

All reagents involved in this study were commercially available and used without further purification: $CuCl₂·2H₂O$ (AR, Jiang-Tian), NaOH (AR, MACKLIN), Na₂CO₃ (AR, JiangTian), KCl (AR, JiangTian), ethyl orthosilicate (GC, Aladdin), aminopropyl triethoxysilane (AR, HEOWNS), ascorbic acid (AR, JiangTian), noctane (AR, MERYER), L-arginine (AR, JiangTian), polyvinylpyrrolidone (MW = 58 000, MACKLIN). All aqueous solutions were prepared with deionized water. A proton exchange membrane (Nafion 211, DuPont), Nafion (5 wt%, Sigma-Aldrich), isopropanol (>99%, Aladdin), carbon NPs (50 nm, Sigma-Aldrich), and graphite (Aladdin) were obtained.

2.2 Catalyst preparation

Cu2O dodecahedron nanoparticles were synthesized by a method reported in the literature.²³ 1.11 g PVP was dissolved into deionized water, and then 10 mL of 0.1 mol L^{-1} CuCl₂- $2H₂O$ was also added into the above solution dropwise, under stirring and heating to 55 °C. Then 10 mL of 2 mol L^{-1} NaOH solution was added. After stirring at 55 $\mathrm{^{\circ}C}$ for 30 min, 10 mL of 1 mol L^{-1} ascorbic acid solution was added to the mixture and continued to stir at 55 \degree C for 3 h. Then, the precipitation was centrifuged and washed in deionized water and anhydrous ethanol 3 times to obtain $Cu₂O$ dodecahedron nanoparticles.

Then the Cu₂O nanoparticles were modified with $SiO₂$ and - $NH₂$.²⁴ 0.73 g *n*-octane and 0.014 g L-arginine were added into

15 mL deionized water and stirred vigorously at 60 \degree C. *n*-Octane was used as the solvent to prevent excessive polymerization of SiO_2 , and to control the formation process of SiO_2 on the surface of Cu₂O. After that, 25 μ L ethyl orthosilicate (TEOS) was added to the mixture and stirred at 60 °C for 4 h. Then 0.2 $g Cu₂O$ dodecahedron nanoparticles were added into the mixture and stirred at room temperature for 20 h. The precipitation was centrifuged and washed three times with deionized water and anhydrous ethanol to obtain $Cu₂O@SiO₂$ nanoparticles. The obtained $Cu₂O@SiO₂$ nanoparticles were evenly dispersed into 25 mL anhydrous ethanol, and then 25μ L aminopropyl triethoxysilane (APTES) was added, and stirred at room temperature for 24 h. The precipitation was centrifuged, washed three times with anhydrous ethanol and deionized water, and dried by vacuum at room temperature for 12 h. $Cu₂O@SiO₂–NH₂$ nanoparticles were obtained. For the control sample of $Cu₂$ - $O(@SiO₂)$, the amount of TEOS was increased to 50 μ L during the $SiO₂$ coating process to maintain a coating thickness similar to that of the $Cu₂O@SiO₂–NH₂$ sample. **Journal of Materials Chemistry A**
 Pape 15 and deciments were the control to the con

2.3 Catalyst characterization

Scanning electron microscopy (SEM) images were obtained on a Hitachi S-4800 field emission scanning electron microscopy. Transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) were conducted on a JEOL F200 transmission electron microscope with an acceleration voltage of 200 kV. The samples were dispersed in ethanol and ultrasonically treated for 20 min, and then the samples were added dropwise onto a Mo grid ultrathin carbon film. X-ray diffraction was conducted on a Bruker D8 Focus X-ray diffractometer using Cu K α radiation (λ $= 0.15418$ nm). The tube voltage and current were 40 kV and 40 mA, respectively. The diffraction angle of samples was recorded from 20° to 80° (2 θ) with a scan rate of 5° min⁻¹. N₂ physisorption analysis was conducted at −196 °C using a Tristar 3000 Micromeritics instrument. XPS was conducted on a Thermo-Fisher Scientistic K-Alpha+ instrument. The X-ray radiation source was Al K α (hv = 1486.6 eV) with an X-ray power of 150 W and the spot size was 400 μ m. The pass energy was 50 eV. The XPS was calibrated with a C 1s binding energy of 284.8 eV. X-ray absorption fine structure $(XAFS)$ measurements were performed to probe the valence state and the bonding information of Cu species on a TableXAFS-500 Xray absorption fine structure spectrometer. The $CO₂$ adsorption experiment was carried out on a BEL SORP-max at 298 K.

2.4 Electrode preparation

We first prepared a conductive gas-diffusion layer by sputtering the Cu layer on a PTFE film, copper target (99.999%). To prepare the catalyst ink, 10 mg of the pre-catalyst and 2 mg of carbon were dispersed in a mixture of 1 mL propanol and 30 μ L of 5 wt% Nafion solution (Sigma-Aldrich); 10 mg carbon was dispersed in a mixture of 1 mL of propanol and 50 µL of 5 wt% Nafion solution; 10 mg graphite was dispersed in a mixture of 1 mL of propanol and 70 μ L of 5 wt% Nafion solution, and then they were sonicated for at least 1 hour. The ink was airbrushed

onto a 2 × 3 cm² Cu/PTFE substrate with a loading of \sim 1 mg cm−² ; the carbon–graphite mixture was sprayed on the catalyst surface in turn. The PTFE-based gas diffusion electrode could enhance $CO₂$ gas mass transfer through hydrophobic PTFE channels and the carbon powder and graphite powder with certain hydrophobicity on the surface of the catalyst could tailor the wettability of the electrolyte and prevent the catalyst from being flooded by aqueous electrolyte. A stainless-steel mesh was used as the anode. Before the reaction, the steel $(1.5 \times 2 \text{ cm}^2)$ was sonicated in acetone and deionized water for 30 min, respectively, and then dried by nitrogen purging for further use.

2.5 Electrochemical $CO₂$ reduction measurement

The $CO₂RR$ activity of the catalyst was investigated by performing electrolysis in a flow-cell configuration using 1 M KCl as the cathodic and 2 M KOH as the anodic electrolyte. Cl− anions can specifically adsorb on the inner Helmholtz plane (IHP) of the catalyst surface, which not only confines $CO₂$ and facilitates electron transfer from the electrode to $CO₂$ via the Xad–C bond but also improves the *CO adsorption for favorable C–C coupling.²⁵ Moreover, the formation of OH[−] during the $CO₂RR$ in the KCl electrolyte leads to a local alkaline environment, and the use of high pH can greatly accelerate the production rates for C_{2+} products.²⁶ The flow cell consists of a gas diffusion layer as the working electrode (0.5 cm^2), a proton exchange membrane (Nafion 211), a stainless-steel mesh (1500 mesh) as the counter electrode, and Ag/AgCl (saturated KCl) as the reference electrode. An electrochemical workstation (CHI660, Chenhua, Shanghai) was used to perform the $CO₂RR$ test. $CO₂$ was supplied into gas chambers with a constant rate of 10 mL min^{-1} by using a mass-flow controller, and the outlet gas flow rate was also recorded by the flow controller. The cathodic electrolyte (30 mL) was circulated through the electrolyte chambers under a constant flow (5 mL min⁻¹) via a peristaltic pump. The anodic electrolyte was circulated through the anodic chamber by a gas-liquid mixed flow pump. Reactions were tested via chronoamperometry for 30 min at different applied potentials from −1.1 V to −1.9 V. Gas products were analyzed via online GC (Shimadzu 2010) with a Thermal conductivity detector (TCD) (column: Agilent Carbon Plot (30 m \times 0.32 mm \times 3 µm)). The FE of gas products was calculated based on the following:

$$
FE = \frac{C_{\text{product}} \times V_{\text{CO}_2} \times 10^{-3} \times t \times e \times F}{V_{\text{m}} \times Q} \times 100\%
$$

where $C_{product}$ is the concentration of the gas-phase products (mol L⁻¹), v_{CO_2} is the flow rate of CO₂, *t* is the reaction time, *e* is the number of transferred electrons for the product, F the Faraday constant 96 485 C mol⁻¹, V_m is the gas mole volume, and Q is the total quantity of electric charge.

The liquid products were determined by H NMR (JEOL JNM ECZ600R 600 MHz), in which 300 μ L electrolyte was mixed with $300 \mu L$ D₂O and 10 μ L diluent dimethyl sulfoxide (DMSO), wherein DMSO served as an internal standard. The concentration of liquid products was calculated based on the following:

$$
\frac{V_{\text{DMSO}} \times \rho_{\text{DMSO}} \times 10^{-3}}{M_{\text{DMSO}}} \times 6_{\text{DMSO(H)}} = \frac{1}{N}
$$

$$
c_X \times 300 \times 10^{-6} \times n_{X(\text{H})} = \frac{1}{N}
$$

where V is the volume of DMSO; ρ_{DMSO} is the density of DMSO (1.1 g cm⁻³ at 20 °C); M is the molar mass; c_X is the concentration of X product; $n_{X(H)}$ is the number of hydrogen atoms in the product X in the nuclear magnetic spectrum used to calculate the concentration of $X_i = N$ is the ratio of the product peak area to DMSO area in the nuclear magnetic spectrum.

The FE of liquid products was computed from:

$$
FE = e \times F \times n/Q
$$

where n is the total product (in moles).

Potentials were referenced to the RHE based on the following:

$$
E_{\text{RHE}} = E
$$
 (vs. Ag/AgCl) + 0.197 V + 0.059 × pH

2.6 In situ Raman test

In situ Raman experiments were conducted by Confocal Raman Microscopy (Horiba) with a 785 nm near-infrared laser in a homemade electrolyzer cell. A platinum electrode and Ag/AgCl electrode were used as the counter and reference electrodes, respectively. The catalyst for the cathode was sprayed on carbon paper $(0.5 \times 1 \text{ cm}^2)$ using ionomer solution as a binder. The electrolyte (1 M KCl) was saturated with CO_2 solution and CO_2 was continued to inject at a flow rate of 5 mL min^{-1} . A long focal length lens (Leica, $50\times$) was used for focusing and collecting the incident and scattered laser light. Electrolysis at different cathodic potentials was performed for 10 min before signal collection.

2.7 In situ ATR-IRAS measurement

In situ ATR-IRAS experiments were performed on a Nicolet iS20 spectrometer equipped with a HgCdTe (MCT/A) detector and a VeeMax III (PIKE Technologies) accessory in a homemade single-cell electrolyzer. A platinum electrode and Ag/AgCl electrode were used as the counter and reference electrodes. A fixedangle Si prism (60°) coated with a catalyst embedded into the bottom of the cell served as the working electrode. Before testing, the detector was cooled with liquid nitrogen for at least 30 min to maintain a stable signal. Electrolysis at different cathodic potentials was carried out for 3 min with chronoamperometry by spectrum collection (32 scans, 4 cm⁻¹ resolution). All spectra were subtracted from the background.

3. Results and discussion

3.1 Synthesis of catalysts and characterization analysis

As shown in Fig. 1, the synthesis of $Cu₂O@SiO₂-NH₂$ can be divided into three steps. Firstly, $Cu₂O$ dodecahedron nanoparticles were synthesized by a precipitation method. Second, the Cu₂O NPs were mixed with TEOS uniformly, and the $SiO₂$

formed during the hydrolysis of TEOS is uniformly covered on the surface of Cu₂O NPs to form Cu₂O@SiO₂ samples. Finally, the $Cu₂O@SiO₂$ nanoparticles and ATPES were evenly dispersed with anhydrous ethanol to obtain $Cu₂O@SiO₂–NH₂.²⁴$ The detailed procedure is discussed in the Experimental section.

The morphology of the catalyst was characterized by SEM. As shown in Fig. 2a–c and $S1$,† the Cu₂O nanoparticles exhibit a regular dodecahedral shape. After $SiO₂$ coating, the surface of the nanoparticles becomes rough, indicating the successful coating of $SiO₂$, and there may be a porous structure (Fig. 2b) and S1b†). In the subsequent modification process of $-NH_2$, the whole particle still maintained a complete dodecahedral structure. The results show that the $SiO₂$ coating and $-NH₂$ modification have no significant effect on the overall structure of $Cu₂O$ nanoparticles (Fig. 2a–c and S1†). The structure of $Cu₂O@SiO₂$ – NH2 and control samples were characterized by TEM. As shown in Fig. $S2$, the Cu₂O nanoparticle exhibits a smooth surface in the TEM image, and the high-resolution TEM (HR-TEM) image shows that there is a lattice fringe $d = 0.213$ nm on the catalyst surface, which is assigned to the $Cu₂O(200)$ surface (Fig. S2b†). The Cu and O elements overlap with the STEM image in EDX element mapping (Fig. S2c†). In the TEM images of the $Cu₂$ -O@SiO₂ sample (Fig. S3a–c†), a lattice fringe of $d = 0.246$ nm can be seen in the inner layer, which belongs to the $Cu₂O (111)$ crystal plane, and an amorphous $SiO₂$ coating with a thickness of about 10 nm located at the outer layer can be seen, which construct the obvious $Cu₂O-SiO₂$ interface. At the same time, the STEM and EDX element distribution maps further confirm the formation of the coating structure (Fig. S3d and e†). For the $Cu₂O@SiO₂–NH₂ sample, a uniform coating layer with a thick$ ness of about 13 nm can be seen on the surface of $Cu₂O$ nanoparticles (Fig. 2a-f). By comparison with $Cu₂O@SiO₂$, it can be preliminarily confirmed that the $Cu₂O@SiO₂$ sample surface has been successfully modified with $-NH₂$. The lattice fringe of $d = 0.302$ nm of the Cu₂O (110) facet in close contact with the SiO_2-NH_2 coating layer in HR-TEM images (Fig. 2g) can confirm the formation of a $Cu₂O-SiO₂-NH₂$ interface. Furthermore, the EDX elemental maps show that the Si and N elements are mainly distributed on the surface of $Cu₂O$ nanoparticles, and the overlay image of element distribution further proves the formation of $Cu₂O@SiO₂–NH₂$. The surface pore distribution on the surface of Cu₂O and Cu₂O@SiO₂-NH₂ catalysts was characterized by using N_2 isothermal adsorption-desorption curves. As illustrated in Fig. S4a, \dagger the surface of Cu₂O exhibits almost no pore structure. In contrast, the N_2 isothermal adsorptiondesorption curve of the $Cu₂O@SiO₂–NH₂$ catalyst reveals a gradual uptake of nitrogen gas with a hysteresis loop, indicating the presence of irregular pores on its surface. At the same time, combined with the pore size distribution diagram in Fig. S4b,† it shows that there are mesoporous pores with an average pore size of 3.32 nm distributed on the $Cu₂O@SiO₂$ $NH₂$ catalyst surface. And its specific surface area increases from 6 $m^2 g^{-1}$ of Cu₂O to 40 $m^2 g^{-1}$ of Cu₂O@SiO₂–NH₂. **Poper**
 $\frac{V_{10000}}{V_{10000}} \times \frac{V_{00000}}{V_{10000}} \times 10^{-3}$
 $\frac{V_{10000}}{V_{10000}} \times 10^{-4}$

> X-ray diffraction (XRD) was conducted to analyze the chemical compositions of $Cu₂O@SiO₂–NH₂$ and the control samples. As shown in Fig. 3a and $S5$, \dagger five obvious diffraction peaks in the XRD pattern of Cu₂O are located at $2\theta = 29^{\circ}, 36^{\circ}, 42.5^{\circ}, 62^{\circ}$

and 74°, which belong to the (110), (111), (200), (220) and (311) crystal planes of $Cu₂O$, respectively. However, the position of the diffraction peaks of $Cu₂O$ dodecahedron nanoparticles have no obvious change after $SiO₂$ coating and -NH₂ modification, indicating that the process of $SiO₂$ coating and -NH₂ modification have no signicant effect on the crystal phase structure of $Cu₂O$ nanoparticles. The surface chemical state of the samples was characterized by X-ray photoelectron spectroscopy (XPS). As shown in Fig. 3b, for the Cu 2p XPS spectrum, there are only two

peaks at the binding energies of 932.3 and 952.0 eV for the $Cu₂O$ catalyst, which are ascribed to Cu⁺ 2p_{3/2} and 2p_{1/2}, respectively.²⁷ Meanwhile for $Cu_2O@SiO_2$ and $Cu_2O-SiO_2-NH_2$ catalysts, a satellite peak at 943 eV appears in the Cu 2p XPS spectra, indicating the presence of Cu^{2+} species.²⁸ Meanwhile, the asymmetric peaks of Cu 2p can be deconvoluted into two sets of peaks. The first group of peaks with binding energies of 932.3 and 952.0 eV are attributed to $2p_{3/2}$ and $2p_{1/2}$ of Cu⁺ species. The second set of peaks at 934.6 and 954.3 eV belong to $2p_{3/2}$ and

Fig. 2 The SEM images of (a) Cu₂O, (b) Cu₂O@SiO₂, and (c) Cu₂O@SiO₂–NH₂; and the structural characterization of Cu₂O@SiO₂–NH₂ (d and e) TEM images, (f) HR-TEM image and (g) EDX mapping.

Fig. 3 Chemical composition characterization of Cu₂O, Cu₂O@SiO₂ and Cu₂O@SiO₂ - NH₂. (a) XRD patterns, (b) Cu 2p XPS spectra, (c) Cu LMM XAES spectra, (d) N 1s XPS spectrum, (e) XANES spectra and (f) Fourier transformed EXAFS spectra of the Cu K-edge.

 $2p_{1/2}$ of Cu²⁺ species.²⁹ Compared with Cu₂O, both Cu²⁺ and Cu⁺ species exist on the surface of $Cu₂O@SiO₂$ and $Cu₂O@SiO₂$ $NH₂$, indicating strong interaction between $SiO₂$ and Cu species. This result is further confirmed by the Cu LMM X-ray induced Auger transition spectra (XAES) (Fig. 3c), where the Cu LMM XAES of $Cu₂O$ sample shows a symmetrical peak at 916.8 eV, which belongs to Cu⁺ species, while the Cu LMM XAES of Cu₂O@SiO₂ and Cu₂O@SiO₂-NH₂ show an asymmetric peak

with a wider full width at half maximum (FWHM), indicating the coexistence of Cu⁺ and Cu²⁺ species at 916.8 and 917.9 eV.³⁰ As is well known, XRD is the analysis of the entire bulk phase, while XPS is surface analysis. No CuO phase is observed in the XRD pattern (Fig. 3a), indicating a low content of Cu^{2+} . XPS spectra (Fig. 3b) show a clear Cu^{2+} peak, indicating that Cu^{2+} is mainly present on the surface, while for $Cu₂O@SiO₂–NH₂$ and $Cu₂O@SiO₂$ catalysts, it is at the interface between $Cu₂O$ and $SiO₂$. The production of Cu²⁺ indicates that the strong interaction between $SiO₂$ and $Cu₂O$ at the interface induces the oxidation effect of low valent Cu, which will affect the reduction of $Cu₂O$ in the $CO₂RR.³¹$ Moreover, XPS analysis was also performed on the $Cu₂O@$ sample that was treated under the same conditions without TEOS and APTES, and there is no signicant difference in Cu 2p XPS between the Cu₂O@ and Cu₂O samples, which indicates that the treatment process did not oxidize Cu⁺ to $Cu²⁺$. Therefore, it can be confirmed that the strong interaction between $SiO₂$ and Cu species at the Cu₂O–SiO₂ interface promotes the formation of Cu^{2+} species. In addition, the chemical state of the $-NH₂$ group on the surface was characterized by N 1s XPS. As shown in Fig. 3d, the spectrum of N 1s XPS can be divided into two peaks located at the binding energies of 400 and 403.2 eV, respectively. According to a previous report, N 1s XPS at low binding energy belongs to the $-NH₂$ group, while the peak at high binding energy belongs to – NH $_3^{\mathrm {+,32}}$ This means that part of the –NH $_2$ group on Cu $_2$ O@SiO $_2$ – NH2 has been protonated, which may increase the local pH on the catalyst surface.²²

To explore more detailed structural information, the samples are further investigated by X-ray absorption fine structure spectroscopy (XAFS). Fig. 3e shows the X-ray absorption near-edge structure (XANES) spectra of Cu. In the Cu Kedge spectra, the pre-edge peak at 8987 eV is attributed to the dipole-forbidden 1s to 3d electron transition, which represents the fingerprint of Cu^{2+} . Moreover, the absorption edge of the curve located between those for $Cu₂O$ and CuO shows the averaged valence state of Cu species in $Cu₂O@SiO₂–NH₂$ between +1 and +2, which is consistent with XPS data. Moreover, the extended X-ray absorption fine structure (EXAFS) spectra of the Cu K-edge show that compared to pure $Cu₂O$, the $Cu₂O@SiO₂–NH₂$ catalyst exhibits a shorter Cu–O bond length in the first shell, indicating that $SiO₂$ enhances the bonding between Cu^{2+}/Cu^{+} and O (Fig. 3f). To demonstrate the interaction between $-NH_2$ groups and CO_2 , the CO_2 adsorption capacity of the catalyst was tested. As shown in Fig. S6,† compared to $Cu₂O@SiO₂$, $Cu₂O@SiO₂$ -NH₂ exhibits stronger $CO₂$ adsorption, indicating that the modification of $-NH₂$ significantly enhances the $CO₂$ adsorption capacity, which will play an important role in promoting the activity of the $CO₂RR$.

3.2 Electrochemical $CO₂$ reduction performance

The catalytic performance of $Cu₂O@SiO₂-NH₂$ for the $CO₂RR$ was evaluated in a flow-cell with 1 M KCl cathode electrolyte (Fig. S7†). The gas and liquid phase products were detected by online gas chromatography (GC) and ¹H nuclear magnetic resonance (¹H NMR), respectively, (Fig. S8 and S9†). Fig. 4a shows the linear sweep voltammetry (LSV) curves of $Cu₂$ - $O(Q)$ SiO₂–NH₂ and the control samples. The cathode current density increases sharply after $CO₂$ gas is introduced, corresponding to the catalytic CO_2RR . When CO_2 is replaced by N_2 , the cathodic current of $Cu₂O@SiO₂–NH₂$ decreases significantly, which indirectly indicates the low HER activity of $Cu₂$ - $O@SiO_2-NH_2$. Under a N₂ atmosphere, the HER current density of the $Cu₂O@SiO₂–NH₂$ catalyst is relatively low compared to

 $Cu₂O$. Another possible reason is that the modification of $SiO₂$ and $-NH₂$ groups hinders the diffusion of $H₂O$ molecules to the catalyst surface, while the $CO₂$ atmosphere eliminates this obstacle and accelerates the adsorption and diffusion of H_2O and CO₂. The current density of the CO₂RR on Cu₂O@SiO₂-NH₂ is significantly higher than that on $Cu₂O$ and $Cu₂O@SiO₂$, suggesting that $Cu_2O@SiO_2-NH_2$ has a strong CO_2RR activity. Due to the exposure of the $Cu₂O$ catalyst to the electrolyte solution, its HER current density under the N_2 atmosphere is slightly higher than that of $Cu₂O@SiO₂$ and $Cu₂O@SiO₂$ -NH₂, indicating that the HER is more likely to occur in the $Cu₂O$ catalyst.

The product distribution of the CO_2RR over $Cu_2O@SiO_2$ -NH2 and the control samples in the cathode potential range of −1.1 to −1.9 V as shown in Fig. 4b–d. The total FE of C_{2+} products exhibits a volcanic trend relative to the cathodic potential change over $Cu₂O@SiO₂-NH₂$ (Fig. 4b), and the total current density increases from 80 to 375 mA cm⁻² (Fig. S10†). Under a current density of 292 mA cm⁻² at −1.7 V, the FE of C₂₊ products reaches the highest value of 81.2% (including C_2H_4 : 40.2%, C₂H₅OH: 29%, CH₃COOH: 9%, and C₃H₇OH: 3%), which has a higher activity than most reported catalysts (Table S1 \dagger). The FE of H₂ and C₁ is only 12% and 6%, respectively. In comparison, the FE of C_{2+} is 68.3% (C_2H_4 : 35%, C_2H_5OH : 24.3%, CH₃COOH: 6.5%, and C₃H₇OH: 2.5%) over Cu₂O@SiO₂ at -1.7 V (Fig. 4c). Meanwhile for Cu₂O dodecahedron nanoparticles, the C_{2+} FE of Cu₂O is only 61.7% (C₂H₄: 31%, C₂H₅OH: 21%, CH₃COOH: 7%, and C₃H₇OH: 2.7%) at the optimum potential of −1.6 V (Fig. 4d). As a result, the ratio of C_{2+}/C_1 increases significantly from 4 in Cu₂O to 13.5 in Cu₂O@SiO₂– NH₂ (Fig. S11a†). In addition, the partial current densities of C_{2+} products of different samples increase from 147 mA cm^{-2} of $Cu₂O$ to 168 mA cm⁻² of Cu₂O@SiO₂ during the CO₂RR process, and then it further increases to 237 mA cm^{-2} over Cu₂O@SiO₂– NH2 (Fig. 4e and S11b–d†). These results indicate that the $Cu₂O@SiO₂-NH₂$ catalyst has a high selectivity of $C₂₊$ products in the process of the $CO₂RR$. **Journal of Materials Chemistry A**
 Sub-model on 13 december 2023. The production of Ca^{pt} indicates that the atomy interaction of Sub-model of the one is the model of the control of the control of Capt in the Co_pR i

> By comparison, it can be found that when $Cu₂O$ nanoparticles are coated with $SiO₂$, the HER is inhibited and the selectivity of C_{2+} products increases in the full cathodic potential range. This indicates that the $SiO₂$ coating layer helps to promote the C–C coupling process. According to the Cu 2p XPS results, the Cu species on the surface will maintain a high valence state after coating with $SiO₂$, thus improving the adsorption strength of *CO on Cu species and increasing the surface coverage of *CO,³³ followed by enhanced C-C coupling. After modifying the surface of the Cu₂O@SiO₂ sample with the - $NH₂$ group, the CO selectivity increases at low cathodic potential, indicating that the $CO₂RR$ process is accelerated. According to previous reports, the interaction between nucleophilic N in – $NH₂$ and electrophilic C in CO₂ molecules can enrich CO₂, thus increasing the local $CO₂$ concentration on the catalyst surface,^{22,34,35} and increasing the conversion rate of $CO₂$ to CO. Therefore, the reaction environment with a high local concentration of *CO can be provided at higher cathodic potential. Meanwhile, according to the N 1s XPS results (Fig. 3d), part of the $-NH_2$ group on the catalyst surface interacts with H_2O to

Fig. 4 CO₂RR performance on Cu₂O@SiO₂–NH₂, Cu₂O@SiO₂ and Cu₂O catalysts. (a) LSV curves toward the CO₂RR; product distributions and corresponding faradaic efficiencies produced by Cu₂O@SiO₂–NH₂ (b), Cu₂O@SiO₂ (c), and Cu₂O (d), (e) the partial current density of C₂₊ products, and (f) stability test of Cu₂O@SiO₂–NH₂ at 280 mA cm⁻² in 1 M KCl electrolyte.

form protonated –N H_3^+ and release OH $^-$ at the same time, leading to a higher local pH value of the reaction micro-environment,²² which is beneficial to promote the dimerization process of the C_1 intermediate.³⁶ Therefore, the positively charged Cu species coupled with the reaction microenvironment with sufficient CO supply and a high local pH value created by the surface $-NH₂$ group significantly enhance the formation of C_{2+} products from the CO_2RR and increase the FE of C_{2+} to 81.2% (Fig. 4b). However, in the Cu₂O catalyst without $SiO₂$ coating, the FE of CH₄ increases at high potential (Fig. 4d). According to a previous report, the $CO₂RR$ is conducive to the formation of the C_1 product over the bulk Cu catalyst in neutral

electrolyte.^{37,38} Therefore, it can be inferred that $Cu₂O$ is rapidly reduced to form Cu in the reaction process, which leads to the formation of $CH₄$ and promotes the HER process at the same time, while the $SiO₂$ coating promotes the formation of $C₂₊$ by stabilizing the positively charged Cu species in the catalyst.³¹ To eliminate the influence of the Cu/PTFE substrate on the analysis results, the $CO₂RR$ performance of the Cu/PTFE substrate was tested under the same conditions. It is found that the $CO₂RR$ to C_{2+} product conversion over Cu/PTFE shows a maximum FE of 26.2% at -1.5 V, and the FE of H₂ reaches 58% with a total current density of only 67 mA cm⁻² (Fig. S12†). The partial current density of C_{2+} products over Cu/PTFE is only 17 mA

 $\rm cm^{-2}$, compared to 237 mA $\rm cm^{-2}$ over Cu $_2$ O@SiO $_2$ –NH $_2$, which shows that the main activity source of the CO_2RR to C_{2+} products is originated from the target catalyst, and the Cu/PTFE substrate has little effect on the activity of the catalysts. The pH value of the electrolyte was also tested during the $CO₂RR$. Due to the generation of OH− at the cathode and the reaction of some OH[−] with CO₂ to generate CO₃^{2−}, the pH increased from 6.82 at 0 V to 10.11 at −1.9 V (Fig. S13†), and the local alkaline environment may facilitate C-C coupling.² In addition to the excellent FE of C_{2+} , $Cu_2O@SiO_2-NH_2$ also exhibits high stability at high current densities. The FE of C_{2+} from the CO_2RR over $Cu₂O@SiO₂-NH₂$ does not decrease significantly for 15 h with 280 mA cm−² current density in 1 M KCl electrolyte and remains above 75% (Fig. 4f).

3.3 Characterization of the samples after the activity test

Considering the reconstruction phenomenon of the oxidation state Cu-based catalyst during the $CO₂RR$, it is necessary to further explore the activity source of $Cu₂O@SiO₂–NH₂$ and the control samples, so the structure and composition of the samples after the activity test were characterized (the samples after the test were stored in a vacuum). As shown in TEM images of Fig. S14-S16,[†] the morphologies of Cu₂O@SiO₂-NH₂ and $Cu₂O@SiO₂$ catalysts have no obvious change after the $CO₂RR$, except that the thickness of the $SiO₂-NH₂$ layer slightly decreases, indicating that the coating layer is partially dissolved during the reaction. It can be explained by the fact that the formation of OH^{$-$} during the CO₂RR increases the pH of the solution, and $SiO₂$ reacts with OH⁻ leading to a decrease in the coating layer thickness. Meanwhile, the HR-TEM images of $Cu₂O@SiO₂-NH₂$ and $Cu₂O@SiO₂$ samples (Fig. S14c, d and S15c, $d\uparrow$) show lattice fringes of $d = 0.302$, 0.213 and 0.209 nm, which belong to the (110) and (200) of $Cu₂O$ and Cu (111) crystal facets, respectively. This indicates that the oxidation state Cu on the catalyst surface is partially reduced, forming the $Cu-Cu₂O$ interface; therefore, the metal-oxide interface effect can effectively improve the formation rate of C_{2+} from the $CO_2RR.^{20}$ At the same time, the elements overlap each other in the EDX mapping of $Cu_2O@SiO_2-NH_2$ and $Cu_2O@SiO_2$ samples, which proves that the $Cu₂O@SiO₂-NH₂$ catalyst still maintains a complete coating structure after the CO_2RR (Fig. S14e, f and S15e†). In contrast, the morphology of the Cu₂O catalyst after the $CO₂RR$ is significantly changed (Fig. S16a and b†), and only the lattice fringe of the Cu (111) facet ($d = 0.2086$ nm) can be observed in the HR-TEM image (Fig. S16c†). This indicates that Cu2O nanoparticles are completely reduced to Cu during the $CO₂RR$. Notably, irregular holes can be observed on the surface of Cu2O nanoparticles (Fig. S16d†), which further indicates that $Cu₂O$ nanoparticles are reduced, leading to a change in the morphology of nanoparticles. The EDX mapping also confirmed the morphology change (Fig. S16e†), where the Cu element is not evenly distributed. By comparing the TEM images of $Cu₂$ - $O@SiO_2-NH_2$, $Cu_2O@SiO_2$ and Cu_2O catalysts, the results indicate that SiO_2 coating can stabilize the morphology of Cu_2O nanoparticles, inhibit the reduction of oxidized Cu in the catalyst, and form a stable metal-oxide interface in the

reduction process, which accelerates the C–C coupling step during the $CO₂RR$.

XRD characterization was carried out to analyze the chemical composition of the catalyst after the $CO₂RR$. As shown in Fig. 5a, there is only one diffraction peak at $2\theta = 43.2^{\circ}$ in the XRD pattern of the $Cu₂O$ catalyst, which is attributed to metal Cu (PDF# 97-004-3493), indicating that $Cu₂O$ is completely reduced during the $CO₂RR$. There are two sets of diffraction peaks in the XRD patterns of $Cu₂O@SiO₂$ –NH₂ and $Cu₂O$ –SiO₂ catalysts, which are located at $2\theta = 36.4^{\circ}$, 42.5° and $2\theta = 43.2^{\circ}$. They belong to the $Cu₂O$ (PDF# 97-018-0846) and Cu phases, respectively. The XRD results show that $Cu₂O$ nanoparticles coated with $SiO₂$ inhibit the reduction of Cu⁺ species and form a metal-oxide interface in the $CO₂RR$ process. Combined with TEM characterization results, it is further demonstrated that $SiO₂$ coating is beneficial to stabilize the oxidized copper in $Cu₂O$ nanoparticles during the $CO₂RR$, due to the strong interaction between $SiO₂$ and Cu₂O species. At the same time, the Cu 2p XPS spectrum of Cu₂O after the CO₂RR (Fig. 5b) shows only two peaks located at 932.0 and 951.8 eV, belonging to $Cu⁰$ species.³⁹ Meanwhile for Cu 2p XPS of Cu₂O@SiO₂ and Cu₂- $O@SiO₂-NH₂$, there is weak satellite peaks at 942-944 eV and acromial peaks at 934.7 eV, indicating the presence of a small amount of Cu^{2+} on the surface.⁴⁰ We further analyzed the Cu LMM XAES spectra of $Cu₂O@SiO₂ - NH₂$ and control samples after the $CO₂RR$. As shown in Fig. 5c, there is only one peak located at 918.1 eV in the Cu LMM XAES of the Cu₂O catalyst, which belongs to Cu^{0} species, suggesting that all Cu^{+} species are reduced to Cu⁰ species. In contrast, the Cu LMM XAES of Cu₂- $O@SiO₂$ and $Cu₂O@SiO₂$ –NH₂ catalysts can be fitted into two peaks at 916.2 and 918.1 eV, belonging to the Cu⁺ and Cu⁰ species, respectively.19,41 Compared with the Cu 2p XPS before the CO_2RR (Fig. 3b), the surface of the $Cu_2O@SiO_2-NH_2$ catalyst is mainly Cu²⁺, and after the CO₂RR, it is mainly mixed Cu⁺ and Cu⁰, indicating that SiO₂ can stabilize part of Cu⁺ and form Cu⁺- $Cu⁰$ interfaces. The results are consistent with TEM and XRD images. Meanwhile, the Si 2p XPS also can be detected in $Cu₂$ - $O@SiO_2-NH_2$ and $Cu_2O@SiO_2$ catalysts, which confirms the presence of $SiO₂$ on the catalyst surface after the $CO₂RR$ (Fig. S17†). Moreover, the N 1s XPS spectrum shows the retention of $-NH₂$ groups on the surface and the presence of groups in two states of -NH₂ and -NH₃⁺, indicating that the surface - $NH₂$ continued to play a role in the enrichment of $CO₂$ during the reaction process and accelerated the conversion rate of $CO₂$ (Fig. 5d). Journal of Materials Chemistry A

www.asoleaning.com

engine control and the materials of the CASER of Eq. prod during the CO_SER online in the case of the cost of the Cost

3.4 Reaction mechanism study

In situ Raman experiments were performed to study the valence changes of Cu species of $Cu_2O@SiO_2-NH_2$ and control samples, and to detect the key intermediates in the $CO₂RR$ process. As shown in Fig. 6, under open-circuit potential conditions, the two Raman peaks at 145 and 213 cm⁻¹ belong to the Cu₂O phase.¹³ When the cathodic potential is applied, the peaks of the Cu₂O phase still exist in the Raman spectrum of Cu₂- $O@SiO_2-NH_2$, indicating that the Cu^{δ +} species can be well preserved in the $CO₂RR$ process. Similarly, this phenomenon

Fig. 5 Chemical composition characterizations of Cu₂O, Cu₂O@SiO₂ and Cu₂O@SiO₂–NH₂ after the CO₂RR. (a) XRD patterns, (b) Cu 2p XPS spectra, (c) Cu LMM XAES spectra and (d) N 1s XPS spectrum.

has also been observed on the Cu₂O@SiO₂ catalyst, where Cu₂O species can exist stably with the increase of cathodic potential. In contrast, for the Cu₂O catalyst, the two Raman peaks at 145 and 213 cm^{-1} only can be observed under the open-circuit potential conditions. However, when a cathodic potential of −1.1 V is applied, the two peaks disappear, suggesting that the $Cu₂O$ on the catalyst surface is completely reduced to metal Cu. The above analysis results imply that the strong interaction between SiO_2 and Cu₂O can improve the stability of Cu^{δ +} species on the catalyst surface. This is consistent with the results of TEM and XRD of samples after the $CO₂RR$. More importantly, in the Raman spectrum of $Cu₂O@SiO₂-NH₂$, an obvious peak at 529 cm−¹ is observed, which is related to the chemisorption of $CO₂$ on the copper surface (* CO_{2ad}),^{42,43} and it further enhances with the increase of cathodic potential applied. This shows that the catalyst has strong $CO₂$ adsorption and activation ability (Fig. 6a). In contrast, the peak intensity of $^*CO_{2ad}$ at 529 cm⁻¹ on $Cu₂O@SiO₂$ and $Cu₂O$ catalysts decreases sharply (Fig. 6b and c), indicating that $^*CO_{2ad}$ is less adsorbed on the surface. Therefore, this result shows that $-NH₂$ enhances the ability of the catalyst to adsorb and activate $CO₂$. As mentioned above, the

–NH₂ group can enrich CO_2 molecules, thus improving the CO_2 coverage on the catalyst surface.²²

Moreover, the peaks at 297 and 373 cm^{-1} are attributed to the rotation and stretching vibrations of *CO on Cu (Cu–CO) in the Raman spectra,^{12,44} which indicate the formation of CO and the adsorption of *CO on the catalyst surface (Fig. 6a–c). At the same time, the most obvious peak at 2000–2080 cm^{-1} is associated with *CO_a (Fig. 6d).²⁷ It is worth noting that the adsorption peak of *CO first increases and then decreases with the increase of cathodic potential, indicating that the coverage of *CO on the catalyst surface increases first with the cathodic potential, which promotes the C–C coupling step. However, after the C–C coupling reaction, the *CO adsorbed on the surface will be consumed, thus weakening the adsorption peak of *CO.⁴⁴ In contrast, the Cu-CO Raman signal on $Cu₂O@SiO₂$ is weaker (Fig. 6b and e), indicating the low surface coverage of *CO. Moreover, the Cu–CO Raman signal is the weakest on the $Cu₂O$ catalyst (Fig. 6c and f). The results of in situ Raman show that the interaction between $-NH_2$ and CO_2 creates a high local concentration of the $CO₂$ microenvironment at the Cu⁰-Cu⁺-NH2 composite interfaces, which accelerates the activation of $CO₂$ and generation of CO, and enhances the adsorption of

*CO.⁴⁵ At the same time, the Cu $^{0}/$ Cu⁺ synergistic effect at the interface may promote the C–C coupling step. However, the Cu⁰-Cu⁺ interface without -NH₂ on the Cu₂O@SiO₂ surface leads to a low local concentration of the $CO₂$ microenvironment, which suppresses the CO generation rate, followed by a slow C– C coupling step. The lack of a $SiO₂$ coating layer on the Cu₂O catalyst leads to the quick reduction of $Cu₂O$ to metal Cu, thus reducing the adsorption strength of CO.

In situ attenuated total reflectance-infrared absorption spectroscopy (ATR-IRAS) was carried out under $CO₂RR$ conditions to monitor the adsorption intermediates and get insight into the $CO₂RR$ mechanism more precisely. As shown in Fig. 7, when the applied cathodic potential is higher than −1.1 V, new infrared (IR) absorption peaks begin to appear in the ATR-IRAS of all catalysts. The most obvious peak appears at 1650 cm^{-1} in the ATR-IRAS of $Cu₂O@SiO₂ - NH₂$ and $Cu₂O@SiO₂$ (Fig. 7a, b), which is related to the IR absorption peak of H_2O .⁴⁶ The intensity of the IR absorption peak increases with the increase of cathodic potential, indicating that the process of H_2O adsorption and activation is accelerated at high cathodic

potential. In contrast, on the surface of the $Cu₂O$ catalyst, the intensity of this absorption peak decreases sharply. This suggests that the surface of $Cu₂O@SiO₂$ can promote the adsorption and activation of H_2O . This can be explained by the fact that the metal-oxide interface $(Cu^{0}-Cu^{+})$ can regulate the dissociation process of H_2O , resulting in high coverage of $*H$ species on the catalyst surface.^{47,48} The presence of a metal-oxide interface is also confirmed by the XRD and TEM results. From the $CO₂RR$ equations in Table S2,[†] it can be seen that the $CO₂RR$ must involve the participation of active $*H$, such as the transfer of 12 protons and 12 electrons to generate ethylene and ethanol, where the protons obtain electrons and become active $*$ H. Therefore, the peak intensity of the H₂O peak represents the ability to activate H_2O to produce active *H, which is partially involved in the $CO₂RR$ and partially in the HER. For catalysts with high $CO₂RR$ activity, most of the active $*H$ is involved in the CO_2RR . In contrast, for catalysts with poor CO_2RR activity, most of the active *H is involved in the HER. From Table S2,† it can also be seen that the number of electrons transferred is directly proportional to the number of protons consumed,

Fig. 7 In situ ATR-IRAS spectra of catalysts under CO_2RR conditions and the reaction mechanism. (a) $Cu_2O@SiO_2-NH_2$, (b) $Cu_2O@SiO_2$, and (c) Cu₂O and (d) reaction mechanism of the CO₂RR to C₂₊ product formation over the Cu₂O@SiO₂–NH₂ catalyst.

which means that the number of active *H is directly proportional to the current density. In Fig. S11,† the current density of C_{2+} in the CO₂RR process of the Cu₂O@SiO₂-NH₂ catalyst is 237 mA cm $^{-2}$, and the current density of \rm{H}_{2} is only 35.32 mA cm $^{-2}$, while for the Cu₂O catalyst, the current density of C_{2+} is only 147 mA $\rm cm^{-2},$ but the current density of $\rm H_2$ is 76.55 mA $\rm cm^{-2}.$ From this result, it can be seen that more active *H is generated in the $Cu₂O@SiO₂-NH₂$ catalyst, and most of it is involved in the $CO₂RR$. Although the HER current density of $Cu₂O$ is high, the total current density is low, resulting in less active *H, which is consistent with the H_2O peak intensity in the ATR-IRAS spectra.

In addition to the $H₂O$ absorption peak, the other strong peak located at 1390 cm⁻¹ belongs to the *COOH species,⁴⁹ implying that the $Cu₂O@SiO₂-NH₂$ catalyst has strong adsorption and activation ability for $CO₂$ molecules. The simultaneous adsorption and activation of H_2O and CO_2 molecules indicate a good coupling between H_2O dissociation and CO_2 reduction. The activated *CO_2 species and surface $^*H_{ad}$ species promote the formation of *CO species, which can be confirmed by the

*CO absorption peak appearing around 2070 cm⁻¹ in the ATR-IRAS spectrum.⁴⁶ There is an obvious *CO IR absorption peak on the Cu₂O@SiO₂–NH₂ surface, indicating the high coverage of *CO on the $Cu₂O@SiO₂–NH₂$ surface, which promotes the formation of C_{2+} products (Fig. 7a). In contrast, the ATR-IRAS of $Cu₂O@SiO₂$ shows a weak *CO IR absorption peak, which corresponds to a low CO coverage (Fig. 7b). However, no obvious IR absorption peak of $*$ CO was found on the surface of Cu₂O, indicating weak *CO adsorption capacity on the surface, because Cu₂O was reduced to Cu⁰, followed by low *CO coverage (Fig. 7c). This finding proves that the presence of $-NH₂$ can improve the adsorption and activation of $CO₂$ on the catalyst surface, and the $Cu⁺$ species can promote the adsorption of CO, thus improving the surface coverage of *CO.

In addition, the peaks of ATR-IRAS at 1260 cm^{-1} , 1205 cm^{-1} , and 1530 cm−¹ are related to the intermediate species of *CHO and *OCCOH on the catalyst, respectively (Fig. 7).⁴⁹ The absorption peak intensity of *OCCOH increases with the cathodic potential, which is consistent with the enhancement trend of the C_{2+} product formation rate with the change of the cathodic potential. Compared with $Cu₂O@SiO₂$ and $Cu₂O$ catalysts, the IR absorption peak of the C_2 intermediate on $Cu₂O@SiO₂–NH₂$ is more intense, indicating that the $C₂$ intermediate has a stable adsorption structure on the catalyst surface, which is conducive to promoting C–C coupling, followed by higher C_{2+} product selectivity. Therefore, on the surface of $Cu_2O@SiO_2-NH_2$, the enhancement of the CO_2 adsorption activation process improves the surface coverage of *CO, thus accelerating the C–C coupling process. The high coverage of *Had species can enhance the protonation process of C_{2+} intermediates and desorption of products, thus promoting the efficient formation of C_{2+} products from the $CO₂RR$ process.^{50,51}

According to the above analysis results, the $CO₂RR$ mechanism on the surface of $Cu₂O@SiO₂-NH₂$ can be reasonably proposed (Fig. 7d). Firstly, $CO₂$ reaches the three-phase reaction interface through the gas diffusion layer, and then is enriched by -NH₂ at the Cu⁰-Cu⁺-NH₂ composite interfaces, forming a local microenvironment with a high concentration of CO_2 .³⁴ $CO₂$ molecules diffused through the porous $SiO₂$ coating layer to reach the Cu 0 –Cu $^+$ interface, and adsorbed and activated at the active site to form $^*CO_{2ad}$. At the same time, the H₂O molecules are activated by the Cu 0 -Cu $^{+}$ interface to increase the concentration of $*H$, which couples with $CO₂$ activation to form *COOH, and promotes the formation of *CO. Then the Cu⁺ enhances the adsorption of *CO, which facilitate the C–C coupling process at the Cu^{δ +}/Cu⁰ interface. The C₂ intermediate is protonated by *H on the catalyst surface, which promotes product desorption and thus accelerates the formation of C_{2+} products. This mechanism is consistent with the theoretical calculation results reported in the literature. For example, the electron density around the C atoms in $*$ CO on the Cu₂O–Cu interface is higher than that on $Cu₂O$, which reduces the reaction energy barrier of C–C coupling to form *OCCO. Meanwhile, the energy barrier of H_2O dissociation on Cu, Cu₂O, and Cu₂O– Cu is 2.33, 2.15, and 1.64 eV, respectively; therefore, the faster H2O dissociation and promoted C–C coupling contribute to accelerated C_{2+} product formation from the CO_2RR on the Cu₂O-Cu interface.⁴⁸ Journal of Materials Chemistry A

records on the calignst surface, which accelerates the formation

entroided portents. Compared with Cuc/0360₃, and C4₃ 0.47 ^{or} 1²O₁ of 2⁰ - 2²O₁ or 2²O₁ or 2²O₁ or

4. Conclusion

In this work, dodecahedral $Cu₂O@SiO₂–NH₂$ nanoparticles have been synthesized by hydrolysis of TEOS and APTES on the surface of Cu₂O particles for the CO₂RR to C_{2+} products. A series of characterization results show electronic interaction between Cu₂O and SiO₂-NH₂, and the Cu⁰-Cu⁺-NH₂ composite interface is formed in the $CO₂RR$ process. With the help of the interface effect, the FE of C_{2+} products reaches 81.3% with a current density of 290 mA cm^{-2} , and is stable for 15 h without significant degradation of activity. Combined with XPS and in situ Raman spectroscopy, the high activity and stability originate from the interaction between $SiO₂$ and Cu₂O, which stabilizes the positively charged Cu species and creates a stable Cu 0 –Cu $^+$ interface under $CO₂RR$ conditions. Meanwhile, the surface - $NH₂$ can enrich CO₂ and promote the adsorption and activation

of CO2 on the catalyst surface, which accelerates the formation of *CO ; the $-NH_2$ protonation process increases the local pH, which creates a reaction microenvironment that facilitates C–C coupling at the $Cu^0-Cu^+ - NH_2$ composite interface, and improves the efficiency of the $CO₂RR$ to $C₂₊$. This research provides a new idea for the surface modification of Cu-based catalysts and the design of an efficient $Cu^{0}-Cu^{+}-NH_{2}$ composite interface.

Author contributions

Conceptualization: Z.-L. W.; methodology: Z.-Y. Z. and H. T.; software: H. T.; validation: Z.-Y. Z. and H. J.; formal analysis: X. W., L. B., and Y. L.; investigation: Y. L. and N. K.; resources: Z.-L. W.; data curation: all authors; writing - original draft: all authors; writing – review & editing: all authors; visualization: Z.- Y. Z. and Z.-L. W.; supervision: Y. Y. and Z.-L. W.; project administration: Y. Y. and Z.-L. W.; funding acquisition: N. K., Y. Y., and Z.-L. W.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) [grant numbers 22075201 and 21962014] and the National Key Research and Development Program of China [2022YFB4101800]. N. K. acknowledges the Office of the Ministry of Higher Education, Science, Research and Innovation (MHESRI) under the Reinventing University System/Visiting Professor Program 2023 for partial support. This work used the Queensland node of the NCRIS-enabled Australian National Fabrication Facility (ANFF).

References

- 1 S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo and I. Chorkendorff, Chem. Rev., 2019, 119, 7610–7672.
- 2 S. Garg, M. Li, A. Z. Weber, L. Ge, L. Li, V. Rudolph, G. Wanga and T. E. Rufford, J. Mater. Chem. A, 2020, 8, 1511–1544.
- 3 Y. Lei, Z. Wang, A. Bao, X. Tang, X. Huang, H. Yi, S. Zhao, T. Sun, J. Wang and F. Gao, Chem. Eng. J., 2023, 453, 139663.
- 4 Y. Hori, A. Murata and R. Takahashi, J. Chem. Soc., Faraday Trans. 1, 1989, 85, 2309–2326.
- 5 M. Fang, M. Wang, Z. Wang, Z. Zhang, H. Zhou, L. Dai, Y. Zhu and L. Jiang, J. Am. Chem. Soc., 2023, 145, 11323– 11332.
- 6 Z.-Y. Zhang, H. Tian, L. Bian, S.-Z. Liu, Y. Liu and Z.-L. Wang, J. Energy Chem., 2023, 83, 90–97.
- 7 L. Fan, C. Xia, F. Yang, J. Wang, H. Wang and Y. Lu, Sci. Adv., 2020, 6, eaay3111.
- 8 A. Bagger, W. Ju, A. S. Varela, P. Strasser and J. Rossmeisl, ChemPhysChem, 2017, 18, 3266–3273.
- 9 P.-P. Yang, X.-L. Zhang, P. Liu, D. J. Kelly, Z.-Z. Niu, Y. Kong, L. Shi, Y.-R. Zheng, M.-H. Fan, H.-J. Wang and M.-R. Gao, J. Am. Chem. Soc., 2023, 145, 8714–8725.
- 10 H. Li, Y. Jiang, X. Li, K. Davey, Y. Zheng, Y. Jiao and S.-Z. Qiao, J. Am. Chem. Soc., 2023, 145, 14335–14344.
- 11 D. Zhong, D. Cheng, Q. Fang, Y. Liu, J. Li and Q. Zhao, Chem. Eng. J., 2023, 470, 143907.
- 12 J. Zhang, Y. Wang, Z. Li, S. Xia, R. Cai, L. Ma, T. Zhang, J. Ackley, S. Yang, Y. Wu and J. Wu, Adv. Sci., 2022, 9, 2200454.
- 13 S. Mu, H. Lu, Q. Wu, L. Li, R. Zhao, C. Long and C. Cui, Nat. Commun., 2022, 13, 3694.
- 14 Y. Jiang, X. Wang, D. Duan, C. He, J. Ma, W. Zhang, H. Liu, R. Long, Z. Li, T. Kong, X. J. Loh, L. Song, E. Ye and Y. Xiong, Adv. Sci., 2022, 9, 2105292.
- 15 Y. Zhou, Y. Liang, J. Fu, K. Liu, Q. Chen, X. Wang, H. Li, L. Zhu, J. Hu, H. Pan, M. Miyauchi, L. Jiang, E. Cortes and M. Liu, Nano Lett., 2022, 22, 1963–1970.
- 16 Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang, P. De Luna, H. Yuan, J. Li, Z. Wang, H. Xie, H. Li, P. Chen, E. Bladt, R. Quintero-Bermudez, T.-K. Sham, S. Bals, J. Hofkens, D. Sinton, G. Chen and E. H. Sargent, Nat. Chem., 2018, 10, 974–980. Poper Journal of Materials Chemeters (Action 19:11, 19:26, 2023. Lington 2023. Downloaded on 2023. Downloaded on 2025-01-24 19:36:27. **[View Article Online](https://doi.org/10.1039/d3ta05652j) 19:36:27.** Chemeters (Action 2023. Downloaded on 2023. Downloaded o
	- 17 P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M. B. Ross, O. S. Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang and E. H. Sargent, Nat. Catal., 2018, 1, 103–110.
	- 18 K. Hadjiivanov and H. Knözinger, Phys. Chem. Chem. Phys., 2001, 3, 1132–1137.
	- 19 Y. Zhou, Y. Yao, R. Zhao, X. Wang, Z. Fu, D. Wang, H. Wang, L. Zhao, W. Ni, Z. Yang and Y.-M. Yan, Angew. Chem., Int. Ed., 2022, 61, e202205832.
	- 20 Y. Zang, T. Liu, P. Wei, H. Li, Q. Wang, G. Wang and X. Bao, Angew. Chem., Int. Ed., 2022, 134, e202209629.
	- 21 F. Li, A. Thevenon, A. Rosas-Hernández, Z. Wang, Y. Li, C. M. Gabardo, A. Ozden, C. T. Dinh, J. Li, Y. Wang, J. P. Edwards, Y. Xu, C. McCallum, L. Tao, Z.-Q. Liang, M. Luo, X. Wang, H. Li, C. P. O'Brien, C.-S. Tan, D.-H. Nam, R. Quintero-Bermudez, T.-T. Zhuang, Y. C. Li, Z. Han, R. D. Britt, D. Sinton, T. Agapie, J. C. Peters and E. H. Sargent, Nature, 2020, 577, 509–513.
	- 22 X. Chen, J. Chen, N. M. Alghoraibi, D. A. Henckel, R. Zhang, U. O. Nwabara, K. E. Madsen, P. J. A. Kenis, S. C. Zimmerman and A. A. Gewirth, Nat. Catal., 2021, 4, 20–27.
	- 23 Z.-Z. Wu, X.-L. Zhang, Z.-Z. Niu, F.-Y. Gao, P.-P. Yang, L.-P. Chi, L. Shi, W.-S. Wei, R. Liu, Z. Chen, S. Hu, X. Zheng and M.-R. Gao, J. Am. Chem. Soc., 2022, 144, 259– 269.
	- 24 L. Li, W. Gu, J. Liu, S. Yan and Z. P. Xu, Nano Res., 2015, 8, 682–694.
	- 25 P.-P. Yang, X.-L. Zhang, P. Liu, D. J. Kelly, Z.-Z. Niu, Y. Kong, L. Shi, Y.-R. Zheng, M.-H. Fan, H.-J. Wang and M.-R. Gao, J. Am. Chem. Soc., 2023, 145, 8714–8725.
	- 26 W. Liu, P. Zhai, A. Li, B. Wei, K. Si, Y. Wei, X. Wang, G. Zhu, Q. Chen, X. Gu, R. Zhang, W. Zhou and Y. Gong, Nat. Commun., 2022, 13, 1877.
	- 27 G.-Y. Duan, X.-Q. Li, G.-R. Ding, L.-J. Han, B.-H. Xu and S.-J. Zhang, Angew. Chem., Int. Ed., 2022, 61, e202110657.
- 28 X. Zhou, J. Shan, L. Chen, B. Y. Xia, T. Ling, J. Duan, Y. Jiao, Y. Zheng and S.-Z. Qiao, J. Am. Chem. Soc., 2022, 144, 2079– 2084.
- 29 C. Azenha, C. Mateos-Pedrero, M. Alvarez-Guerra, A. Irabien and A. Mendes, Chem. Eng. J., 2022, 445, 136575.
- 30 H.-Q. Liang, S. Zhao, X.-M. Hu, M. Ceccato, T. Skrydstrup and K. Daasbjerg, ACS Catal., 2021, 11, 958–966.
- 31 J. Li, A. Ozden, M. Wan, Y. Hu, F. Li, Y. Wang, R. R. Zamani, D. Ren, Z. Wang, Y. Xu, D.-H. Nam, J. Wicks, B. Chen, X. Wang, M. Luo, M. Graetzel, F. Che, E. H. Sargent and D. Sinton, Nat. Commun., 2021, 12, 2808.
- 32 X. Fang, S. Wu, Y. Wu, W. Yang, Y. Li, J. He, P. Hong, M. Nie, C. Xie, Z. Wu, K. Zhang, L. Kong and J. Liu, Appl. Surf. Sci., 2020, 518, 146226.
- 33 D. Zeng, C. Li, W. Wang, L. Zhang, Y. Zhang, J. Wang, L. Zhang, X. Zhou and W. Wang, Chem. Eng. J., 2023, 461, 142133.
- 34 Y. Zhao, X. Zu, R. Chen, X. Li, Y. Jiang, Z. Wang, S. Wang, Y. Wu, Y. Sun and Y. Xie, J. Am. Chem. Soc., 2022, 144, 10446–10454.
- 35 W. Li, Z. Yin, Z. Gao, G. Wang, Z. Li, F. Wei, X. Wei, H. Peng, X. Hu, L. Xiao, J. Lu and L. Zhuang, Nat. Energy, 2022, 7, 835– 843.
- 36 C.-T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. G. de Arquer, A. Kiani, J. P. Edwards, P. D. Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton and E. H. Sargent, Science, 2018, 360, 783–787.
- 37 R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya and P. Strasser, J. Am. Chem. Soc., 2014, 136, 6978–6986.
- 38 H. Xiao, T. Cheng and W. A. Goddard III, J. Am. Chem. Soc., 2017, 139, 130–136.
- 39 Q. Fan, X. Zhang, X. Ge, L. Bai, D. He, Y. Qu, C. Kong, J. Bi, D. Ding, Y. Cao, X. Duan, J. Wang, J. Yang and Y. Wu, Adv. Energy Mater., 2021, 11, 2170140.
- 40 Y. Jiang, C. Choi, S. Hong, S. Chu, T.-S. Wu, Y.-L. Soo, L. Hao, Y. Jung and Z. Sun, Cell Rep. Phy. Sci., 2021, 2, 100356.
- 41 L. Xu, X. Ma, L. Wu, X. Tan, X. Song, Q. Zhu, C. Chen, Q. Qian, Z. Liu, X. Sun, S. Liu and B. Han, Angew. Chem., Int. Ed., 2022, 61, e202210375.
- 42 C. Chen, X. Yan, Y. Wu, S. Liu, X. Zhang, X. Sun, Q. Zhu, H. Wu and B. Han, Angew. Chem., Int. Ed., 2022, 61, e202202607.
- 43 X. Yan, C. Chen, Y. Wu, S. Liu, Y. Chen, R. Feng, J. Zhang and B. Han, Chem. Sci., 2021, 12, 6638–6645.
- 44 K. Yao, J. Li, H. Wang, R. Lu, X. Yang, M. Luo, N. Wang, Z. Wang, C. Liu, T. Jing, S. Chen, E. Cortes, S. A. Maier, S. Zhang, T. Li, Y. Yu, Y. Liu, X. Kang and H. Liang, J. Am. Chem. Soc., 2022, 144, 14005–14011.
- 45 X. Yuan, S. Chen, D. Cheng, L. Li, W. Zhu, D. Zhong, Z. J. Zhao, J. Li, T. Wang and J. Gong, Angew. Chem., Int. Ed., 2021, 60, 15344–15347.
- 46 P. Wang, H. Yang, C. Tang, Y. Wu, Y. Zheng, T. Cheng, K. Davey, X. Huang and S.-Z. Qiao, Nat. Commun., 2022, 13, 3754.
- 47 C.-T. Dinh, A. Jain, F. P. G. de Arquer, P. De Luna, J. Li, N. Wang, X. Zheng, J. Cai, B. Z. Gregory, O. Voznyy,

B. Zhang, M. Liu, D. Sinton, E. J. Crumlin and E. H. Sargent, Nat. Energy, 2019, 4, 107–114.

- 48 S. Wang, D. Wang, B. Tian, X. Gao, L. Han, Y. Zhong, S. Song, Z. Wang, Y. Li, J. Gui, M. G. Sendeku, Y. Zhang, Y. Kuang and X. Sun, Sci. China Mater., 2023, 66, 1801–1809. **Published on 13** Materials Chemistry A

B. Zinng, B. Lin, D. Sinton, E. J. Crumlin and E. H. Sargent, 50 H. Zhang, J. Gao, D. Raciti and A. S. Hall, Nat. Carad., 2023. A

Nova Rover, 2023. A 107-114. A Cabo, L. Han, Y. Zh
	- 49 M. Zheng, P. Wang, X. Zhi, K. Yang, Y. Jiao, J. Duan, Y. Zheng and S.-Z. Qiao, J. Am. Chem. Soc., 2022, 144, 14936–14944.
- 50 H. Zhang, J. Gao, D. Raciti and A. S. Hall, Nat. Catal., 2023, 6, 807–817.
- 51 J. Feng, L. Zhang, S. Liu, L. Xu, X. Ma, X. Tan, L. Wu, Q. Qian, T. Wu, J. Zhang, X. Sun and B. Han, Nat. Commun., 2023, 14, 4615.