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From insulator to semiconductor: effect of
host–guest interactions on charge transport in
M-MOF-74 metal–organic frameworks†

Sydney M. Angel,a Nicholas S. Barnett,ab A. Alec Talin,c Michael E. Foster,c

Vitalie Stavila, c Mark D. Allendorf c and Monica C. So *a

Here, we report an air-free approach to infiltrate isostructural

metal–organic frameworks (MOFs), M-MOF-74 (M = Cu, Mn, Zn,

Mg), with conjugated acceptor 7,7,8,8-tetracyanoquinodimethane

(TCNQ). The TCNQ@M-MOF-74 compounds exhibit a striking cor-

relation between their bulk conductivities and the open d shell

variants (Cu, Mn), arising from TCNQ p-doping of the MOFs.

Importantly, conjugation of the guest molecule is a prerequisite

for inducing electrical conductivity in these systems.

Combining the tunability and porosity of metal–organic frame-
works (MOFs) with electronic (semi-)conductivity has driven the
development of electronics, such as chemical sensors,1–3

photovoltaics,4–7 low-k dielectrics,8,9 and non-volatile memory
elements.10 However, most existing MOFs are insulators due to
the poor overlap between p orbitals of the organic linkers and d
orbitals of the metal ions, suppressing charge transfer. By
judiciously selecting metal ions with high-energy valence elec-
trons and organic linkers that form coordination bonds with
increased orbital delocalization between metal and linker,
conductive MOFs have been realized.6,11–14

A paradigm-shifting alternative approach, which some of
our team explored, successfully rendered the insulating
Cu3(btc)2 MOF into an electrically conductive one by introdu-
cing a conjugated and redox-active guest molecule, 7,7,8,8-
tetracyanoquinodimethane (TCNQ).15 Since then, we also
uncovered that the preferential ordering of the TCNQ mole-
cules along the (111) lattice plane within HKUST-1 and the
TCNQ bridging coordination motif to two adjacent copper
paddlewheels facilitate conductivity.16 Recently, others adapted
this infiltration strategy for M-MOF-74 (M = Co,1 Mn17) with

densely packed open metal sites (OMS)18–26 for effective host–guest
interaction. To date, none have elucidated the nature of the host–
guest complex or proposed conductivity mechanisms in the
TCNQ@M-MOF-74 system. In general, the interaction between
the guest and the host has been characterized as ‘redox dop-
ing’,27,28 resulting in charge transfer and the formation of mobile
charge carriers in the MOF conduction or valence bands and thus
increased electrical conductivity.29,30 However, these previous stu-
dies failed to address additional fundamental questions, such as: to
what extent do open d shells of metal ions in M-MOF-74 influence
charge transfer? What role does conjugation play in TCNQ in
influencing electrical conductivity? How does oxygen affect the
stability of TCNQ? Through what charge transport mechanism
does TCNQ induce MOF conductivity?

These unanswered questions motivated us to closely scruti-
nize the nature of TCNQ@M-MOF-74 interactions that contri-
bute to bulk conductivity. Recently, Bláha and colleagues
confirmed charge transfer between TCNQ and Mn-MOF-74 by
diagnostic Raman stretches, but their approach resulted in
oxidized TCNQ.17 Samples were further handled under ambient
conditions, contaminating the host–guest system with oxygen.
Our work expands upon their integral efforts, applying an air-
free TCNQ infiltration approach into isostructural M-MOF-74,
where M is divalent Mg, Mn, Cu, and Zn. Through rigorous
exclusion of oxygen, our inert infiltration method yields no
oxidized TCNQ. The coordination of TCNQ to the OMS of
M-MOF-74 was confirmed by spectroscopy. Strikingly, we reveal
that M-MOF-74 with open d shells and conjugated guest
molecules are critical in forming charge transport networks,
which are supported by temperature-dependent electrical con-
ductivity measurements and density functional theory (DFT)
calculations. Importantly, we propose a plausible mechanism
to rationalize TCNQ binding to OMS of M-MOF-74 framework
to form a continuous network. Together, the experimental and
theoretical results in this work shows that TCNQ p-dopes the
M-MOF-74 (M = Cu, Mn) hosts, facilitating through-bond
charge transport via conjugated TCNQ guests.
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The powder X-ray diffraction (PXRD) scans confirm the
identity of the M-MOF-74 (M = Cu, Mn, Zn, Mg) powders.
PXRDs indicate M-MOF-74 are indeed isostructural, differing
only differ by the metal ion (Fig. 1a and Fig. S2, ESI†). After
TCNQ infiltration (Fig. 1b–e and Fig. S2, ESI†), the MOFs not
only remained crystalline but retained the same rough, porous
morphology with some polycrystallinity. The presence of
TCNQ in the MOFs was also confirmed by elemental analysis
(Table S1, ESI†). There are 2 TCNQs per cell of Cu-MOF-74
(1 TCNQ per 6 copper ions) and 4 TCNQs per cell of Mn-MOF-74
(2 TCNQ per 6 manganese ions). Importantly, there is no
evidence of metal-containing TCNQ nanowires in the SEM data;
these may form when TCNQ and M(II) are being reduced to
TCNQ� and M(I) by oxidation.16

To track the coordination of TCNQ to the OMS, Raman
spectra were collected for TCNQ@M-MOF-74 (M = Cu, Mn). The
frequencies of CQC and CRN stretching modes of the TCNQ
change depending on the degree of charge transfer in both
MOF analogues. The 114 cm�1 mode shift of the C-CN wing
stretch of TCNQ from 1462 to 1348 cm�1 indicate that TCNQ
interacts with the OMS on the Cu2+ ions in Cu-MOF-74 (Fig. 2a).
The same shift occurs when TCNQ interacts with the OMS on
the Mn2+ ions in Mn-MOF-74 (Fig. 2b). A red shift of 19 cm�1 for
the CQC wing stretching mode suggests a partial charge
transfer of B0.3 e� between the framework and TCNQ.31 The
CRN stretch at 2230 cm�1 indicates coordination of the TCNQ

molecule to the metal ion for Cu-MOF-74 and Mn-MOF-74
(Fig. 2a and b).

The CRN stretch of TCNQ is also substantially broadened
by adsorption for both analogues. Strikingly, the aforemen-
tioned signals are absent from Mg-MOF-74 and Zn-MOF-74
(Fig. S4a and b, ESI†), indicating the absence of TCNQ
coordination.

With the TCNQ@M-MOF-74 (M = Cu, Mn) in hand, we
performed UV-vis absorption and diffuse reflectance spectro-
scopies to evaluate intermolecular charge transfer. After TCNQ
infiltration of Cu-MOF-74 and Mn-MOF-74, there is no band
corresponding to the oxidation product of TCNQ2�, dicyano-p-
toluoyl cyanide, at 480 nm, as expected by eliminating oxygen
during infiltration of the M-MOF-74 samples with TCNQ in the
glovebox. Importantly, unlike the un-infiltrated MOF-74 sam-
ples, new lower energy absorption peaks appear at 660 and
800 nm (green, Fig. 2c) and 850 nm (purple, Fig. 2d), respec-
tively. The strong 660 nm peak of TCNQ@Cu-MOF-74 is attrib-
uted to TCNQ2� formed by disproportionation of TCNQ�

dimer, suggesting a salt of [TCNQ]2�[Cu-MOF-74]2+ formed.1

The weaker absorption band at 800 nm for TCNQ@Cu-MOF-74
originates from the TCNQ� monomer.27 The 850 nm peak in
TCNQ@Mn-MOF-74 represents donor–acceptor charge transfer
between the Mn-MOF-74 and confined TCNQ guests.12 We also
observe the optical band gaps decrease from 3.08 eV to 1.88 eV
and from 2.48 eV to 1.46 eV, consistent with the formation of
more conducting TCNQ@Cu-MOF-74 and TCNQ@Mn-MOF-74,
respectively. These band gaps are comparable to those pre-
viously reported for TCNQ@Co-MOF-74 (1.5 eV)1 and
TNCQ@Cu3(btc)2 (1.76 eV).15

To determine the electronic conductivity, electrical transport
measurements were performed on MOF pellets using a two-
point probe geometry with large area electrodes to decrease the
contact resistance. We used temperature-dependent measure-
ments to extract the activation energy for electronic transport.
Conductivity data gathered for all MOF pellets were at tempera-
tures well below the MOF-74 thermal decomposition of 593 K.1

We observe no detectable conductivity for TCNQ@M-MOF-74

Fig. 1 (a) PXRD of M-MOF-74 and TCNQ@M-MOF for M = Cu, Mn and
SEM of (b) Cu-MOF-74, (c) Mn-MOF-74, (d) TCNQ@Cu-MOF-74, and (e)
TCNQ@Mn-MOF-74.

Fig. 2 Raman spectra of (a) Cu-MOF-74 and (b) Mn-MOF-74 before and
after TCNQ infiltration. (c) Transmission UV-Vis absorbance spectra of Cu-
MOF-74 and (d) diffuse reflectance spectra of Mn-MOF-74 before and
after TCNQ infiltration.
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(M = Mg, Zn) (Fig. S5, ESI†) as a function of increasing
temperature, which is consistent with the lack of TCNQ coor-
dination in these two variants. In contrast, as we increased the
temperature from 294 K to 353 K for TCNQ@Cu-MOF-74 and
TCNQ@Mn-MOF-74, their conductivity increased up to 5.40 �
10�2 S m�1 and 5.02 � 10�3 S m�1 with activation energies of
889.9 meV and 580.7 meV, respectively (Fig. 3). These values are
similar to those previously reported for TCNQ@Co-MOF-74.1

Notably, the nonlinear activation energy of TCNQ@Cu-MOF-74
is attributed to the electron–electron Coulombic interactions of
copper which varies by temperature. This interaction reduces
the density of states near the Fermi level at lower temperatures
(T o 323 K in Fig. 3c), thus increasing activation energy.32

At T 4 323 K, lattice vibrations intensify, weakening electron
binding in the outer layer of the atomic nucleus. Electrons
likely move away from the nucleus, thus decreasing activation
energy.33

To develop a deeper understanding of how TCNQ increases
the electronic conductivity of Cu-MOF-74 and Mn-MOF-74, we
performed DFT calculations. As illustrated in Fig. 4a, the
calculations indicate that TCNQ covalently binds to the OMS
of the MOFs and that TCNQ molecules may form a new
continuous network through the unit cell. Our calculations
further show that the LUMO of TCNQ appears near the valence
band of the MOFs (Fig. 4b). For TCNQ@Cu-MOF-74, the LUMO
of TCNQ slightly overlaps with the valence band of the MOF, as
indicated by the blue/green shaded regions in Fig. 4b. The
resulting greater degree of overlap is consistent with the larger
conductivity observed for the Cu variant compared to the Mn
analogue (Fig. 4c). Electron transfer from the MOFs to TCNQ is
also predicted by Bader charge analysis (Table S2, ESI†),
suggesting that TCNQ p-dopes the MOFs in both analogues.

To further probe the effects of guest molecule on the
formation of molecular pathways, we infiltrated the Cu
and Mn versions of M-MOF-74 with the fully hydrogenated
analogue of TCNQ, (cyclohexane-1,4-diylidene)dimalononitrile
(H4TCNQ). Elemental analysis indicates that the loading of
H4TCNQ is similar to that of TCNQ (i.e. 2 H4TCNQ molecules

per Cu-MOF-74 cell and 4 TCNQ molecules per Mn-MOF-74
cell). Although Raman suggests H4TCNQ coordination to the
OMS with a C-CN wing stretch shift and CRN stretch broad-
ening (Fig. S4c and d, ESI†), we observed that H4TCNQ@
M-MOF-74 (M = Cu, Mn) exhibit no detectable conductivity
(Fig. S6a and b, ESI†). The same applies to the magnesium and
zinc variants (Fig. S6c and d, ESI†). The crystals remained
insulating, since the H4TCNQ lacks a conjugated p electron
network. Therefore, the presence of conjugation in the guest
molecule is critical in completing the molecular network
necessary for inducing conductivity in TCNQ@M-MOF-74, as
was observed for TCNQ@Cu3(BTC)2.15

In summary, we employed an air-free approach to infiltrate a
series of isostructural M-MOF-74 (M = Cu, Mn, Zn, Mg) with
TCNQ. This strategy produced no oxidized TCNQ2� by-product,
unlike ambient infiltration strategy performed in previous
studies. Infiltration of TCNQ into open d shell variants Cu-
MOF-74 and Mn-MOF-74 yielded electrically conductive materi-
als. Interestingly, the introduction of H4TCNQ to the copper
and manganese M-MOF-74 did not improve the conductivity,
indicating the need for a conjugated p-network in the guest
molecules to facilitate proper band alignment and thus charge
transport. To our knowledge, this is the first work with compu-
tational evidence proposing an important structure–property
relationship—binding of TCNQ to the OMS forms new mole-
cular pathways and p-dopes the MOF-74 framework. Since most

Fig. 3 IV curves for (a) TCNQ@Cu-MOF-74 and (b) TCNQ@Mn-MOF-74,
along with corresponding Arrhenius plots for (c) TCNQ@Cu-MOF-74 and
(d) TCNQ@Mn-MOF-74.

Fig. 4 (a) Possible configuration predicted by DFT calculations of how
TCNQ may provide continuous molecular networks through the M-MOF-
74 unit cell. On the right, only the TCNQ and metal atoms are shown to
illustrate the new channels in the z- (top) and xy-directions (bottom). In the
HSE06 total and partial density of states for (b) TCNQ@Cu-MOF-74 and
(c) TCNQ@Mn-MOF-74, the blue curve is the sum of states on the TCNQ
molecule, and green/magenta curves are the Cu/Mn states, respectively.
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current conductive materials have limited chemical tunability,
this work is an important step towards understanding how
alternative charge transport pathways may help access conduc-
tive behavior in insulating inorganic parent materials. To guide
future experimental efforts, computational analysis can deter-
mine what modifications make certain MOFs hold more metal-
lic properties29,30,34 or predict which MOFs will have lower
bandgaps.35 By fundamentally understanding host–guest inter-
actions, we can unlock the potential to transforming insulating
materials into novel nanoporous conductive MOFs for electro-
nic devices.4,5,15,36,37
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