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Wider impact

The implementation of artificial sensory systems is essential for converting vast amounts of
environmental information into input signals required for neuromorphic computing. When
realized using memristors, such systems effectively compress signals during the conversion
process while retaining adaptive, nociceptive, and spatiotemporal information critical for
learning and inference. Furthermore, their compatibility with a wide range of sensors ensures
excellent expandability, while the dynamic resistive switching properties of memristors enable
diverse signal conversion strategies. Memristor-based artificial sensory systems not only
emulate human sensory processing but also offer significant advantages in terms of energy
efficiency and miniaturization, making them highly suitable for edge computing and wearable
technologies. Their ability to perform parallel signal processing can also enhance real-time
decision-making in complex environments. Gaining insights into memristor-based artificial
sensory systems, which process patterned sensory data akin to human perception, can drive

future advancements in neuromorphic computing, industrial automation, and robotics.
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Memristive Neuromorphic Interfaces: Integrating Sensory
Modalities with Artificial Neural Networks

Ji Eun Kim2®*, Keunho Soh¢', Suin Hwang¢, Do Young Yang¢, and Jung Ho Yoon<*

The advent of the Internet of Things (loT) has led to exponential growth in data generated from sensors, requiring efficient
methods to process complex and unstructured external information. Unlike conventional von Neumann sensory systems
with separate data collection and processing units, biological sensory systems integrate sensing, memory, and computing to
process environmental information in real time with high efficiency. Memristive neuromorphic sensory systems using
memristors as their basic components have emerged as promising alternatives to CMOS-based systems. Memristors can
closely replicate the key characteristics of biological receptors, neurons, and synapses by integrating the threshold and
adaptation properties of receptors, the action potential firing in neurons, and the synaptic plasticity of synapses.
Furthermore, through careful engineering of their switching dynamics, the electrical properties of memristors can be
tailored to emulate specific functions, while benefiting from high operational speed, low power consumption, and
exceptional scalability. Consequently, their integration with high-performance sensors offers a promising pathway toward
realizing fully integrated artificial sensory systems that can efficiently process and respond to diverse environmental stimuli
in real time. In this review, we first introduce the fundamental principles of memristive neuromorphic technologies for
artificial sensory systems, explaining how each component is structured and what functions they perform. We then discuss
how these principles can be applied to replicate the four traditional senses, highlighting the underlying mechanisms and
recent advances in mimicking biological sensory functions. Finally, we address the remaining challenges and provide
prospects for the continued development of memristor-based artificial sensory systems.

20 Unlike conventional systems, biological sensory systems detect,
1. Introduction 21 interpret, and store external information in a data-parallel and
22 integrated manner.’® This is enabled by receptors that generate

The growing demand for automation in supply chair%,3
manufacturing, robotics, and unmanned vehicles has driven t

development of artificial intelligence (Al) technologies. Thede
technologies have the potential to significantly improve efficieng\‘f-’
and autonomy across various industries using sensory systergz
comprising sensors and computational networks to sense t

surroundings and acquire information from the environment in re7a9
time. 2 For instance, conventional complementary metal-oxid®
semiconductor (CMOS)-based systems have demonstratg’c]-
intelligent recognition and control applications, such as imaé@
classification, natural language processing, and decision—makiﬁg”
tasks.310 However, because the von Neumann architectusé
physically separates memory and processing units, conventiorsa$
systems require massive amounts of data transfer between thelzi‘ﬂ.6
This results in high power consumption and causes significa%?
latency, commonly referred to as the von Neumann bottlenegk,8

which fundamentally degrades the performance of Al applications.?019
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electrical signals only when stimuli exceed a threshold, selectively
adapting to harmless, repetitive inputs. These signals are transmitted
as action potentials (spikes) through neurons to specific brain regions,
where they are processed in an event-driven, adaptive, and parallel
manner, enabling learning and inference.'® 17 Inspired by the energy-
efficient and fault-tolerant nature of biological systems,
neuromorphic computing has been developed to overcome the
technical limitations of conventional CMOS-based systems.'8-21 |t
supports the integration, processing, and storage of sensory
information, playing a crucial role in advanced functions, such as
decision-making, cognition, learning, and memory. Moreover,
neuromorphic computing can execute multiple tasks simultaneously
in highly parallel settings with a low power consumption of 1-100 fJ
per synaptic event.??2 The exceptional capabilities of memristors
enable their integration with neuromorphic learning algorithms to
facilitate advanced functions. Large-scale integration and hardware
implementation using CMOS-compatible processes are essential to
leverage these capabilities, with extensive research currently
underway. The technology has now advanced beyond hybrid 1T1R
structures, reaching a stage where fully memristor-based hardware
implementations are feasible. This progress has demonstrated the
practical applicability of memristors across various Al applications,
validating their potential for widespread deployment.?3-?’

Therefore, it is crucial to implement artificial sensory systems
capable of mimicking the roles of biological receptors, neurons, and
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synapses to fully leverage neuromorphic computing.2831 AlthouB
conventional CMOS-based electronics have been used to devel&8
artificial synapses and neurons as neuromorphic devices, they ab®
limited by circuit area and energy efficiency.32-34 Since the CMOB0
based devices are optimized for digital switching, they struggle to
handle smooth and continuous signal variations, which are essent@gi
for accurately reflecting external stimuli. Thus, essential functiog®
such as the accumulation of external stimuli, the generation @8
corresponding output signals, and information storage inevitably lge}
performed by separate components. As a result, the emulatigs
process compromises both area and energy efficiency in proportigg
to the number of devices used.3> Moreover, implementing analgg
switching to achieve both the precision and dynamic range requirgg
for emulating biological counterparts remains a significant challeng®
in conventional CMOS-based systems. These systems necessitate tiyg)
incorporation of additional circuitry, such as Digital-to-Analgg
Converters (DACs), to facilitate analog switching. Although moye@
complex DAC configurations are required to enhance the outppg
resolution, the resulting output often lacks the desired smoothne$4
Meanwhile, among various neuromorphic devices, the memristpg
stands out for its area-efficient structure as well as high-speed afpg
low-power operation. Additionally, their excellent scalabiligyy
durability, and uniformity make them well-suited for the reliabjg
implementation of artificial sensory systems.3¢-0 Furthermore,78
unique attribute of memristors is their ability to gradually switgp
between a low-resistance state (LRS) and a high-resistance stagq
(HRS) in response to external stimuli, such as voltage or current. §p
other words, memristors exhibit continuous and dynamic resistigg
state changes rather than relying on binary resistance states. Tigg
enables the direct processing of analog external stimuli without t8&
complex configuration of using multiple devices or peripheral circugg
such as analog-to-digital converters. Therefore, the dynamic resistigg
switching provided by memristors is essential for replicating t88
artificial sensory system, as it more efficiently captures the fgi9)
fidelity of incoming signals. Owing to these advantages, memristayg)
have been widely utilized in the implementation of artificg{
receptors, synapses, and neurons.*" 42 In particular, their mater@p
composition, device structure, and switching dynamics can Bg
carefully engineered to optimize switching behavior, making them
adaptable to both volatile and non-volatile properties—k9\4
characteristics for mimicking biological elements.3% 4351 ThlgS
integrating memristive devices with various sensors facilitates t%
implementation of artificial sensory systems corresponding &
tactile, visual, auditory, and olfactory modalities.5% >3 98

99

In biological sensory systems, sensory receptors located in t®
sensory organs convert external perceptual signals into recegtQn
potentials, and sensory neurons integrate these potentials to initiadQ
action potentials. Finally, the synapses store the encoded sensppg
information. Similarly, in a bioinspired memristive sensory systeé®4
sensors generally convert external stimuli into electrical sigrp3y
which are then applied to memristors. Subsequently, the memristigeg
receptor device that receives the signal generates a potential thatgy
proportional to the input, incorporates information regardiQg
harmful stimuli, and transfers it to the subsequent sensory syste@9
Subsequently, the integrated memristive synapse and neural devicgg)
respond to input signals in a manner analogous to biological

2| J. Name., 2012, 00, 1-3

perception systems. By mimicking the biological sensoypy.systems the
integration of sensory, processing, and remdryOé8MBENEINE3Eh
bioinspired memristive systems enables high power efficiency, low
latency, and excellent processing capabilities.

Despite the versatility of memristors, current research has
predominantly focused on signal conversion based on their switching
characteristics. This approach has contributed immensely to the
advancement of neuromorphic computing by enabling reliable and
direct conversion of external stimuli into signals that drive neural
networks implemented in hardware and software. However, studies
on how closely these conversions align with the behavior of the
human nervous system are lacking. The existing memristor-based
systems often fail to fully capture the intricate dynamics of biological
sensory systems, particularly in terms of complexity and adaptability.
Devices capable of replicating the full range of functions of biological
receptors, neurons, and synapses remain exceedingly rare. Even at
the individual level, most artificial systems struggle to replicate all
the critical functions of a single biological element. In artificial
sensory systems, this limitation is further compounded by the
frequent exclusion of specific functions or entire elements, resulting
in incomplete or inefficient performance. This highlights a critical
challenge: implementing all essential characteristics necessary for
effective emulation. For artificial sensory systems to accurately
process external stimuli across diverse environmental conditions,
several crucial properties must be considered, including sensitivity,
adaptability, and spatiotemporal processability. For instance,
biological systems can dynamically adjust their sensitivity to external
stimuli, such as by enhancing auditory perception in noisy
environments or modulating visual processing under low light.
Emulating this adaptability requires devices capable of self-tuning
and learning in response to changing environmental conditions.
Moreover, processing spatiotemporal patterns—similar to biological
synapses responding to time-dependent signals—remains essential
for replicating complex sensory functions. A systematic
understanding of these properties is fundamental to developing
artificial sensory systems that process complex input patterns with
greater accuracy and efficiency.

In this review, the recent advances, challenges, and prospects of bio-
inspired memristive artificial sensory systems are comprehensively
examined. In this context, the switching performance metrics
required for memristors in the implementation of artificial sensory
systems, as depicted in Fig. 1, along with the sensory modalities they
aim to emulate, are discussed. The subsequent sections first explore
the fundamental roles of receptors, neurons, and synapses in
biological sensory systems, along with the corresponding switching
characteristics of memristors essential for replicating these neuronal
components. Next, innovative cases of bio-inspired artificial sensory
systems developed for the four primary senses—tactile, visual,
auditory, and olfactory—are presented. Recent memristor research
progress is then examined, focusing on how closely these systems
mimic biological sensory functions and evaluating the effectiveness
of these advancements. Finally, challenges and prospects for the
development of memristor-based artificial sensory systems are
addressed. This review aims to encourage ongoing research and

This journal is © The Royal Society of Chemistry 20xx
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development, fostering a deeper understanding and broadbf
application of bio-inspired sensory systems by analyzing the roles bl
receptors, neurons, and synapses, the switching dynamics b2
memristors, and the necessary characteristics for each type of neutaB
implementation. 54

2. Element of the nervous system: Recepto?y

Neuron, and Synapse 56

To emulate the characteristics of receptors, neurons, and synaps57
using memristors, a comprehensive understanding of th
operational mechanisms is required. Additionally, investigating t
switching properties of memristors and exploring how the
properties can be utilized to mimic each component are essential
This process is crucial for precisely controlling the electri
characteristics of memristors and effectively reproducing tcge
complex functions of the nervous system, as shown in Fig. 2. 4

65
66
67
68

Receptors play a crucial role in detecting and responding to variogg
stimuli, enabling us to perceive and interact with the environment.%j)
55 Receptors convert physical and chemical stimuli into electricay
signals. This process enables humans to appropriately respond ¥
stimuli. Receptors have evolved to be specifically responsive 3
stimuli and can be classified into categories based on their ability yo
accommodate different external stimuli, such as mechanoreceptorzgg,

2.1 Receptor

thermoreceptors, photoreceptors, chemoreceptors, ang
nociceptors. 77
78

Receptors operate based on thresholds and relaxation.>® The
threshold indicates the minimum intensity of a stimulus required g
be activated, below which the receptor remains unresponsive. Tigg)
characteristic enables the receptors to filter out insignificant mingn
stimuli and focus on more critical signals. Upon activation by exterrgp
stimuli, receptors transition into a relaxed state where thgg
responsiveness to the stimulus gradually diminishes, enabling thega
to revert to their initial state. During the relaxation state, receptqgs
retain a certain degree of activation; consequently, the threshogg
intensity of the stimulus for reactivation is reduced compared wigy
that of the initial activation. This phenomenon, known gg
sensitization, is crucial for modulating receptor sensitivitygg
Additionally, some receptors exhibit adaptation characteristigg
whereby their response diminishes in the presence of continuogyg
stimuli. These receptors provide essential protection agairgp
persistent and harmful stimuli while also preventing energg
expenditure on non-essential stimuli. 94

95
The volatile memristor is suitable as an artificial nociceptor becau9é
it reacts only to electric pulses above a certain threshold afJ
gradually reduces the output signal once the pulse is removed.>*98
Moreover, such threshold and relaxation behaviors strongly depeS®
on the strength, period, and duration of the input signal. Regulafif§)
relaxation enables the mimicry of phenomena observed in cerfildil
receptors, such as allodynia, in which the threshold is lowered up&?

This journal is © The Royal Society of Chemistry 20xx
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exposure to harmful stimuli, and hyperalgesia, in whick;the response
is amplified. In addition, this approach enables tRéGAPPRIMEREITSH
of adaptation functionality, which allows the receptors to adjust to
repeated stimuli. The detailed mechanisms and applications are
discussed in Section 3.

2.2 Neuron

Neurons constitute the fundamental units of the nervous system that
transmit electrical signals generated by external stimuli at receptors
in the brain, enabling recognition and response to these stimuli.6% 62
Neurons are primarily composed of the cell body (soma), dendrites,
and axons. The soma acts as the metabolic and genetic center of the
neuron, housing the cell nucleus and supporting vital cellular
functions. Dendrites extending from the soma receive signals from
other neurons or sensory receptors, whereas axons transmit
electrical signals to other neurons and muscles. These electrical
signals are generated from rapid changes in the membrane potential
of the axon, known as the action potential.53 When the action
potential reaches the axon terminal, neurotransmitters are released
into the synapse and subsequently interact with the dendrites of the
postsynaptic neuron. Synaptic transmission facilitates the formation
of complex neural networks that enable information collection,
integration, transmission, and coordination. Neurons are classified
based on their functions and characteristics. For instance, sensory
neurons detect external stimuli, such as light, sound, and
temperature, and transmit this information to the central nervous
system. Motor neurons carry commands from the central nervous
system to the muscles or glands. Interneurons function as
intermediaries, processing and relaying
sensory and motor neurons.

information between

Volatile memristors are well-suited as artificial neurons due to their
ability to exhibit a steep current response exceeding a threshold
stimulus, followed by a decrease through volatile switching—closely
mimicking action potentials. Additionally, they effectively integrate
inputs from multiple channels and generate repetitive spike signals
with frequencies proportional to the combined input levels. During
signal generation, volatile memristors dynamically adjust their
responses based on input strength and frequency, efficiently
encoding continuous analog signals into spike trains—similar to
biological neurons. This adaptability enables differentiation between
weak and strong stimuli, replicating sensory adaptation mechanisms
inthe human nervous system. Recent studies have demonstrated the
implementation of Hodgkin—Huxley (HH) and leaky integrate-and-
fire (LIF) model neurons using volatile memristors, further
highlighting their compatibility with biological neuron models. These
models leverage the ability of memristors to replicate essential
neuronal behaviors such as voltage-dependent conductance and
firing dynamics. Specifically, artificial neurons using volatile
memristors encode temporal information by adjusting their spiking
frequency based on the input intensity, closely resembling the time-
dependent stimulus information of biological sensory neurons.
Moreover, memristor-based implementations offer advantages such
as low power consumption and scalability while achieving
comparable performance to biological neurons.

J. Name., 2013, 00, 1-3 | 3
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Synapses serve as junctions between the axon of one neuron and thd
dendrite of another, playing an essential role in neur®
transmission.>?  When an electrical signal reaches the axon of a
presynaptic neuron, the synapse adjusts the connection strengg9
(synaptic weight) based on the input signal, either strengthening or
weakening the synaptic weight. The dynamic regulation of synapgb
weight is fundamental to learning and memory and serves asgy
critical component in understanding the functional mechanisms gé
the human brain. Adjustments in synaptic weight, such as spi
timing-dependent plasticity (STDP), short-term plasticity (STP), a%(h
long-term plasticity (LTP), are fundamental to the ability of the braérs
to adapt, learn, and form memories.®>67 STDP is used to effectiv%)s
control synaptic weight, demonstrating a type of synaptic plastic%‘?
that depends on the exact timing between the two neurons. Ttég
mechanism facilitates the efficient utilization of neural networks g\_')
leveraging the temporal interactions between neurons. STP refers%
temporary changes in synaptic strength. The STP lasts from a fey\i
seconds to several minutes and can fluctuate based on the activi?yz
patterns of the neurons. It is primarily governed by intracellulyg
mechanisms associated with neurotransmitter release and pIaySﬁl
crucial role in adapting to rapidly changing environments a
processing transient information. Unlike STP, LTP is required for Ionﬂs
term memory formation. LTP refers to the sustained enhanceme7t7
of synaptic strength over extended periods, ranging from hours to
years. It is known to play a critical role in learning and memao
processes and arises from the repeated activation of specific neuraé
paths.

2.3 Synapse

79

80
Non-volatile memristors are highly suitable for mimicking synap8d
characteristics.>® 6 6 Non-volatile memristors exhibit resistan82
changes in response to electrical stimuli, effectively replicating t83
synaptic weight. Furthermore, the switching behavior of non-volat8
memristors, which allows them to retain information even in tB&
absence of a bias, enables the emulation of long-term memory
functionality. The modulation of resistance and synaptic weiggpg
assumes a critical function for assessing the intensity of previogy
input signals within the frameworks of machine learning and neugg
network algorithms. The linearity of resistance modulation is crucgg
and can be effectively utilized to deduce the strength of the signatyg
Linearity is essential for improving the precision of the numerogg
algorithms used in machine learning and neural networks)
Furthermore, the potential of utilizing non-volatile memristors ¢x
emulate the characteristics of synaptic devices has been
demonstrated, enabling the replication of various forms of synaptig
plasticity such as LTP, STP, and STDP. In detail, non-volatigg
memristors can exhibit STDP behavior, where synaptic strengthgy
modified based on the timing of pre- and post-synaptic input spikeyg
In addition, LTP and STP can be achieved by adjusting the devigg
conductance in response to varying input frequencies, allowing npg
volatile memristors to adapt to both transient and sustained inpg
patterns. This is achieved through the precise control of fi@
formation of conductive pathways, which are closely associated wit}g
resistance changes in non-volatile memristors. This approach g
effectively reproduce the dynamic properties of synaptic plastigiys

4| J. Name., 2012, 00, 1-3

These findings demonstrate the ability to implement yarigusferms
of synaptic plasticity and memory functiéhs!ORigHHliBRting Othisir
potential suitability for efficient brain-inspired
architectures.

computing

3. Memristor-based tactile sensory system

Human skin enables us to recognize objects and interpret the
environment through the sense of touch. Tactile perception is
complex and involves sensing, refining, learning, and forming
interactions with the external environment.’%73 Receptors on
sensory neurons embedded in the skin, such as nociceptors,
chemoreceptors, and mechanoreceptors, detect various somatic
sensations and convey tactile information to the brain via electrical
signals. This process enables exquisite sensations of object
recognition, texture discrimination, and sensory feedback. Tactile
receptors can detect even small amounts of pressure or force, and
when combined with external stimuli, they provide a detailed and
nuanced picture of the object or surface being touched. This
information can help humans navigate their environment,
manipulate objects, and perform tasks that require a sense of touch.
They can also improve the functionality and comfort of prosthetic
limbs by providing users with a more natural and intuitive sense of
touch. This chapter explains memristor-based electronic tactile
sensory systems related to somatic sensations.

3.1 Memristor-based nociceptor and adaptive receptor

Nociceptors play a vital role in mimicking human acceptance and
processing of external stimuli. When a stimulus such as mechanical
stress, chemical stress, or temperature is applied, the nociceptor
determines the degree of hazard and generates the corresponding
biochemical signals. Therefore, to assess the danger posed by
external stimuli and to respond to and safeguard oneself, all diverse
features must be incorporated into the nociceptor.’* 75

Memristor-based nociceptors are similar to bionociceptors in that
they respond differently to different stimuli. As shown in Fig. 3a,
Yoon et al. established an artificial nociceptor based on an Ag-based
threshold-switching memristor with the function of a nociceptor that
implements four key functions (threshold, relaxation, no adaptation,
and sensitization).”® Allodynia and hyperalgesia, resulting from
harmful or abnormal stimuli, can be effectively induced in
memristors by applying high voltages that exceed the threshold level.
When the input voltage is increased to a level perceived as harmful,
the conductive paths in the memristor grow excessively, making
spontaneous and complete rupture challenging after the voltage is
removed. Consequently, residual Ag clusters or conductive paths
remain within the oxide film, facilitating a rapid response to stimuli
below the threshold (sensitization). To further demonstrate the
potential of the nociceptor, an artificial Ag-based nociceptor
memristor was integrated into the thermoelectric module. The
thermal nociceptor only generated an electric spike at a critical
temperature (50 °C, hazardous temperature). As the temperature
increased, the signal amplitude increased, and the onset time
decreased.

This journal is © The Royal Society of Chemistry 20xx
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Kim et al.”” reported an artificial nociceptor based on a Pt/HfO,/THb
memristor utilizing trap/detrap mechanisms instead of a catich6
based threshold-switching memristor. The nociceptive function way
imitated by adjusting the trap depth of the HfO, layer. When58
sufficiently high positive voltage was applied to Pt, lowering the trap
level below the Fermi energy level of TiN facilitated electron injectig9
from TiN to fill the trap sites. Once filled, the electron transp@gp
increased sharply due to trap-assisted tunneling conductigi
between trap sites, turning the device on (threshold switching). Aftgp
the voltage was removed, the difference in work functions betweg3
the Pt and TiN electrodes created a built-in potential that caused tlige]
trapped electrons to relax over time (relaxation). The devigg
exhibited a wide operation time span ranging from milliseconds §§
ten seconds, with a relaxation time scale well-matched to typigy
biological systems making it highly effective for mimicking nociceptgg
behavior. Therefore, additional circuits have been designed g9
effectively mimic biological reflex actions, enabling immediap®)
response generation and transmission to the spinal cord whar
exposed to danger. 72
73
There is an increasing need for humanoid robots to imitate advanced
biological functions to respond efficiently to external environmentg4
Biological skin can protect itself against harmful damage by detecting
the degree of danger and initiating appropriate actions usi|7g
nociceptors. Moreover, biological skin can self-heal and eventua{}g
return to its normal state when damaged by external stimuli. T|7e]
design of a memristor is crucial for mimicking the compl7)8
characteristics of bioskin. Xiaojie et al. reported an artificial sensofy
system with the ability to sense and warn patients of pain and hesnb
itself. The FK-800-based organic volatile memristor acted as an
electronic skin (Fig. 3b).”8 Self-healing was achieved because of t@(z
intrinsic characteristics of the organic material, similar to humgrg
skin. In addition, to sense pain and signs of injury, the artificial tacth
system was composed of a triboelectric generator, volatég
memristor, and light-emitting diode (LED). The triboelectg’g
generator and volatile switching memristor act as mechanorecept(g7
and nociceptors, respectively. The triboelectric generator generatgg
an output voltage based on the intensity of the external stimullgg
and the generated voltage is applied to a volatile memristor. Wherg’b
voltage above the threshold value was applied to the volatéq_
memristor, the memristor and LED turned on. This case wgs
considered to have minimal damage or pain and was not considered
a threat. When a voltage below the threshold value was applied, t
memristor and LED did not turn on, causing no damage or paj
Conversely, when a large input voltage was applied to the memris
as a strong stimulus, the relaxation time and resistance of the volat
memristor were longer and lower, respectively. Therefore, the L
was stronger and required a longer time to turn off completely.

98
99

To effectively perceive the external environment, it is essentiaim)
recognize both harmful and incoming nonharmful stin]_Lw'i
Nociceptors react to potentially harmful stimuli such as pressyigy
heat, or chemicals, transmitting signals to the brain, where they are
interpreted as pain. They respond consistently to specific type 6
stimuli (no adaptation). In contrast, adaptive receptors reduce t% ir
sensitivity when exposed to continuous stimulation (adaptatkila5
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facilitating the filtration of unimportant and repetitive informationi?e:
80 T . . DAL 01039/ REMEQARSSF

This mechanism is essential for sensory processes such as vision,
hearing, and touch, allowing humans to adjust to dynamic

surroundings.

However, its implementation is difficult for both the existing CMOS-
based and memristor-based receptors. Song et al. proposed an
artificial receptor that mimicked both the adaptive and maladaptive
characteristics using an Ag-based volatile memristor.8! The artificial
receptor was implemented by adjusting the thickness of the
conductive filament with varying amounts of metal ions. The
competitive  relationship  between  Joule heating and
electromigration was controlled by the number of metal ions, which
determined the thickness of the conductive filament. Fig. 3c shows
that the thin conductive filament (low Ag concentration) ruptured
due to Joule heating during high-intensity stimuli (adaptive
receptor), whereas the thick filament (high Ag concentration)
maintained an electrical on-state (maladaptive receptor). Thus, the
authors demonstrated the feasibility of implementing normal
sensory-receptor behaviors.

3.2 Tactile stimulus perception

Artificial electronic skin, which captures surrounding tactile stimuli,
is deployed in advanced intelligent systems. Conventionally, artificial
electronic skin requires additional external equipment to store and
process large amounts of data. However, this structure is inefficient
in terms of energy consumption and processing speed because it
causes time delays and large energy consumption. Memristor-based
tactile sensory systems can effectively emulate the functions of
human tactile nerves in low-power operations without requiring
additional equipment. Memristor-based tactile sensory systems
enable the recording of stimuli by translating external mechanical
stimuli into modulated electrical spikes. To mimic a tactile sensory
system, an artificial system generally comprises a bio-inspired
synaptic or neuron memristor and various sensors for detecting the
external environment. The sensor connected to the memristor
detected the strength of the external stimulus and generated various
electrical signals based on the degree of stimulation applied. The
memristor integrates the output signals of the parallel sensor and
processes them into unified electrical spikes.82-84

Wang et al.8> demonstrated an ultrafast artificial skin system based
on near-sensor analog computing architecture. The artificial skin was
implemented by combining a memristor with a tactile sensor and
was fabricated on a flexible substrate. When a tactile sensor
recognizes an external stimulus, an input pulse is generated and
applied to the memristor to alter its resistance. Accordingly, the
system simultaneously captures and processes the tactile stimuli in
real time. In addition, the authors suggested that the system could
be mounted on a finger or prosthesis to detect the edge information
of external objects in real-time (Fig. 4a).

Sensory systems can simultaneously receive and transmit various
types of information from the environment via various receptors.
Similar to human reliance on multiple stimuli for decision-making

J. Name., 2013, 00, 1-3 | 5
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and responses, artificial nervous systems that utilize memristdré
require the integration of information from diverse external stimblb
to achieve effective functionality. Artificial sensory systems aim 5®
achieve multisensory functions by simultaneously integrating abd/
processing various sensory input signals. The first approach involve8
integrating the input signals obtained from a circuit comprisib®
multiple sensors and a memristor. Xingiang et al.2¢ developed6®
multimodal sensory system that utilized pressure and temperatud
sensors in conjunction with non-volatile memristors and employed2
signal coupling method to integrate the outputs (Fig. 4b). The inp@8
stimulus can be integrated from different sensors, and an outpa#
signal can be generated once the input signal from each sensob
reaches a fixed threshold voltage. Six pressed and two hot stim6lb
were applied to the system, which recognized eight stimuli abd
generated an eight-fold output. Correspondingly, the memristo8
reacted to several toxic stimuli and modulated conductance. TG9
study demonstrates that a multimodal artificial sensory system cd)
be constructed using different sensors (pressure and temperaturdl
and signal-coupling modules. 72

73

A multimodal sensory system can be realized using memristéft
materials. This approach simplifies the circuits that constitute tHe
multimodal sensing, making it efficient and advantageous in terms 6P
energy utilization. Qingxi et al. developed a multisensory system by
configuring an oscillation circuit using piezoresistive sensors and/&
VO,-based volatile memristor (Fig. 4c).8” VO, exhibits inherent
thermal sensitivity, which enables its resistance state affg
characteristics to change in response to temperature fluctuatiorpg
Consequently, the VO,-based memristor enables the monitoring @f)
temperature stimuli without the need for supplementary sensog]
When direct thermal stimuli are applied to a memristor, the inheregp
thermal sensitivity characteristics of VO, alter the switching behavigg
thereby inducing a change in the oscillation circuit characteristics. $a1
addition, when haptic actions are applied to a piezoresistive sens@%
the magnitude of the stimulus alters the output of the sensor, whiglg
in turn changes the voltage applied to the non-volatile memristor,
consequently modifying the oscillation characteristics of the volat§<e]
memristor. Therefore, without multiple sensors or electrical modulgg
an artificial mechanical sensory system can effectively synchronige_;
information regarding external stimuli through vibrations that vagyy
in response to pressure and temperature. 91

92
Memristor-based tactile receptors effectively detect various exterrgg
stimuli, including heat and pressure. These receptors mimic the}
ability to recognize external stimulus patterns and generags
appropriate  responses  through sensor integration aQg
computational analyses. However, sensor integration remaigy
energy inefficient, and research on their ability to process multighg
stimuli simultaneously remains limited. Further investigation g9
needed on software-based approaches for classifying and analyzing
simultaneous stimuli, such as applying algorithms similar to Im)
single-coupling module shown in Figure 4b. These additiq_r@i
approaches can enhance the accuracy of human tactile SYStRYD
emulation. 103

104

4. Memristor-based visual sensory system 105

6 | J. Name., 2012, 00, 1-3

Human vision is the primary method used to assess the size.shape,
color, brightness, distance, and surface rBugHRESsBP AN BBJSEL.
Humans acquire more than 80% of their external information
through the visual sensory system. In the information acquisition
process, the eyes, brain, and muscles collaborate to perceive light
stimuli and protect oneself by responding to potentially harmful
stimuli.®82° The human visual sensory system rapidly processes these
complicated tasks in a highly accurate and energy-efficient manner.
Thus, mimicking this system is desirable for the efficient detection,
processing, and storage of large volumes of visual information.
However, the biological visual system features a complex hierarchical
organization, including neural structures, such as the retina, bipolar
cells, horizontal cells, and ganglion cells. Consequently, mimicking
this system by using electronic circuits requires highly complex
circuits and substantial energy consumption for information
processing. Therefore, the development of more compact and
efficient artificial visual sensory systems that can integrate sensing,
processing, and storage functions is required. In Section 3, we
describe a method that mimics human visual characteristics, such as
light and motion detection, and the perception of an object using a
memristor. This approach employs a memristor to mimic the visual
adaptation functions, enhance efficiency, and reduce the complexity
of an artificial visual system.

4.1 Retina-like preprocessing

The retina contains photoreceptors that detect external stimuli and
transmit visual data to bipolar cells, which serve as intermediaries
between the photoreceptors and ganglion cells. The data are then
relayed through synapses with ganglion cells, triggering action
potentials that travel to the lateral geniculate nucleus (LGN). The LGN
transmits these signals to the visual cortex. In this process flow, a
memristor can process information related to light intensity, directly
detect the light intensity, or appropriately adapt to changes in the
ambient light levels of the external environment.?% 92

Dang et al.”® demonstrated that the one-phototransistor—one-
memristor (1PT1R) synaptic device shown in Fig. 5a has the potential
for in-sensor computing and edge computing in visual sensory
systems. In the 1PT1R structure, the ZnO-based phototransistor
provides a driving current proportional to the light illumination,
enabling the implementation of a high-linearity light-tunable
multilevel conductance state within the Mo/SiO,/W memristor.
Moreover, an optical artificial neural network (OANN) composed of
a 16 x 3 1PT1R array performs cross-talk-free conductance updates
because the phototransistor functions as a selector. The proposed
OANN achieved a 99.3% accuracy in image recognition,
demonstrating that the 1PT1R device is a promising hardware
solution for artificial visual systems.

Shan et al.®* demonstrated fully light-modulated synaptic plasticity
using a plasmonic optoelectronic memristor comprising Ag
nanoparticles embedded in a TiO, nanoporous film. Fig. Sb illustrates
the photooxidation and reduction processes of the Ag nanoparticles
embedded in the device under UV/Vis irradiation. Under visible light
irradiation, electrons from Ag transferred to the conduction band of

This journal is © The Royal Society of Chemistry 20xx
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the TiO, film, generating Ag* ions. This increased the effectib8
diameter of the Ag conducting filament, thereby enhancing devibé
conductivity. In contrast, UV irradiation excited electrons in tb&
valence band of the TiO, film to its conduction band, which reduc&db
the number of Ag* ions and suppressed the increase in devibd
conductivity. Consequently, when electrical pulses were appli&bd
after UV and visible-light irradiation, the current response wa$
greatly improved only under visible-light irradiation. This enables thé
emulation of light-induced and gated synaptic plasticity. The STBA
learning was conducted using UV/Vis light. The memristor effectivéyp
eliminates image noise owing to its specific UV light-induced long-
term depression (LTD) function. In addition, light-induced STBR
learning has been identified as a feature of high-level imagel
processing. By incorporating low-level image preprocessing steg5
such as contrast enhancement and noise reduction, the learning rag®
and efficiency of high-level image recognition processes can g
significantly improved by these memristors, as demonstratgg
through simulations. 69

70
Xu et al.%> reported the HH neuron-based artificial visual sensofyl
system shown in Fig. 5c using a volatile VO, memristor. The volatif@
VO, memristor modulates the threshold and hold voltages based a3
temperature, which mimics a biological neuron. The proposdd!
volatile memristor exhibits frequency relaxation in tonic spiking [®
type of neuron spiking model) under varying pulse inputs, and/7®
transition between spiking models when the input pulse changéd
abruptly. This is analogous to the light-adaptive functions 68
photoreceptors (cone and rod cells) in the retina. Primar®
photoreceptors responsible for light processing change during tB€
transition between bright and dark environments. This shift, referr&d.
to as photopic and scotopic adaptation, has been successfu8y
realized in a circuit comprising an HH neuron, a thermoelect83
ceramic, and a light-dependent resistor. These components convert
light into thermal stimuli that are subsequently used to generagel
input pulses that induce frequency changes during spiking. This ligtg5
adaptable function is useful for artificial applications. The authgg
demonstrated the potential of integrating spiking neural netwogg
(SNNN) algorithms into machine vision applications to simplify circug

and complex processing. 89
90
4.2 Self-protection via detecting the intensity of light 91
92

In addition to light detection, the visual system should also 83
capable of analyzing the diverse spatiotemporal patterns o
photoreceptors activated in the retina. This involves protectie(_5
behaviors such as closing the eyes to shield against damage frod
intense light and impending collisions, and nociceptive functions o/

detect harmful light stimuli. 98
99

A highly efficient artificial visual sensory system comprisinglgrp
optoelectronic threshold-switching memristor and an actuator
proposed by Pei et al.?® The Sh,Ses/CdS-core/shell nanorod arga <
based (SC) optoelectronic memristor enhanced light-harvesti
activities, received optical signals, and converted them to a voltage
before transmitting them to the threshold-switching memristor=
based neuron circuit. The SC memristor exhibited resistive switcﬂig

This journal is © The Royal Society of Chemistry 20xx
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characteristics in a light-irradiated environment, as showmin.Ffig, 63,
driven by conductive dangling bonds and RatalfelP deferts BROERE
surface of the Sb,Se; nanorods. This results in an increased ON/OFF
resistance ratio, which in turn increases the firing frequency of
neuronal circuits proportional to the light intensity. When the light
exceeded the safety range, the firing frequency and amplitude of the
SC memristor and neuron circuit increased significantly, potentially
triggering an electric actuator. This emulates eye muscle contraction
and reproduces the self-protective behavior of closing eyes in
response to intense light damage.

Wang et al.?” developed an artificial visual sensory system motivated
by locusts, which, compared to humans, have a superior perception
of moving objects. The vision system of locusts includes a lobular
giant movement detector (LGMD) that generates danger signals
before the occurrence of collisions. This functionality is
demonstrated in Fig. 6b using an Ag conductive filament-based
threshold-switching memristor. The formation and rupture of Ag
conductive filaments in the volatile memristor were used to
implement the excitatory and inhibitory effects on LGMD neurons.
The conductivity of the volatile memristor increased and then
decreased as the intensity of light increased. When the light power
applied to the device was gradually increased to correspond to the
approaching objects, the current response initially increased,
reached a peak, and then decreased as the collision point
approached. In detail, at low light intensities, moderate Joule heating
accelerates the drift of Ag* ions and the formation of conductive
filaments, while at high light intensities, significant Joule heating
induces the rupture of Ag conductive filaments. Consequently, the
LGMD neuron implemented in this configuration provides
information prior to the collision point, enabling self-protective
behavior.

Li et al.?® demonstrated a visual nociceptor based on a two-terminal
optical synaptic device with a monolayer MoS, depicted in Fig. 6c.
The optical synaptic device successfully emulated adjustable synaptic
behaviors, including STP, LTP, and paired-pulse facilitation (PPF), by
leveraging the persistent photoconductivity resulting from charge
trapping. Notably, when the device was stimulated with light
intensities ranging from 2.5 to 7.5 nW/um? the photocurrent
reached a higher level of saturation, which aligned with the no-
adaptation characteristic of nociceptors. Furthermore, when paired
320 nm light pulses were applied to the optical synaptic device at
intervals of 1, 2, and 3 s, a stronger photocurrent was observed at
shorter intervals, demonstrating the dependence of the device on
the relaxation time. Additionally, ultraviolet pulses with a
wavelength of 320 nm and power densities of 25 and 75 nW/um?
were used to induce low-injured and strong-injured states,
respectively. In these injured states, the device exhibited a
heightened sensitivity to light pulses. In the low-injured state, even a
low-intensity ultraviolet pulse (1.5 nW/um?, 1 s) exceeded the
activation threshold, while in the strong-injured state, an intensity of
1.2 nW/um?, which is below the threshold, produced a significant
photocurrent. This behavior mirrors the nociceptor characteristics of
"allodynia" and "hyperalgesia," where sub-threshold stimuli can
elicit a response in an injured state.

J. Name., 2013, 00, 1-3 | 7
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To implement artificial visual sensory systems, memristors have be&?2
integrated with separate photodetection devices or fabricated usibgd
photoresponsive materials. While integration with separate devicb4
ensures reliable processing of external stimuli, photoresponsi®®
memristors  offer superior integration density. Howev&b
incorporating photodetection capabilities into memristors oft&
requires additional fabrication steps, such as coating nanorod array8
with photoactive materials or using ultrathin channel materials 1ib®
nanosheets, which increases complexity. Therefore, further researG
is required to develop simplified fabrication techniques fod
photoresponsive memristors. 62

5. Memristor-based auditorial sensory system 63
64

65

The biological auditory system detects and collects information fronm
pressure waves of different amplitudes, frequencies, an
components in the medium generated by motion or collision.?*
Sound waves that arrive at the ear are mechanically transmitted TQ
sensory hair cells in the cochlea, generating amplified electrica
signals owing to mechanical vibrations. Information in the form o
amplified electrical signals is transmitted from the auditory sensor
nerves to the cerebral cortex. Through this process, human$
recognize sounds in their surroundings. The input sound is encodgdg
as a train of electrical pulses created from the output of a frequency-
selective channel in the cochlea (space-to-rate encoding). Sparsé
sampling of the frequency information was performed according Zos
the active frequency channel without capturing all information from
the sound source at the maximum sampling rate. Using this codin
strategy, the cerebral cortex efficiently extracts key information frony
complex sound signals, enabling the biological auditory system To
produce higher-level perceptions including sound location, rhythm
perception, pitch recognition, and sound recognition. The ear
receives a combination of simultaneous sound sources with variogz
frequency components. This complexity is further exacerbatgo3
because both the frequency and amplitude of these components c%
be converted into a single sound. Owing to the spatiotemporaﬁé
encoded nature and time dependency of sound waves, sigr%ﬁ
processing in the auditory system is more complicated than that$r7
the visual or tactile systems. Chapter 4 introduces the pioneerigé
demonstration of an integrated memristor-based artificial audit
system divided into sound location (azimuth detection) and sou%)
recognition.

91

5.1. Sound location

92

To determine the location and direction of a sound source, tﬁe”
human brain relies on interaural time difference (ITD), which is R
difference in the time of sound arrival between the two ears. THe
sound signal is generally divided into a left and right signal to g6
processed, and the important clue for sound location is the ITD in R
range of —0.6 ms to 0.6 ms. Based on ITD theory, several successf®
demonstrations of sound localization have been conducted usiﬁé’
memristors. 100

101

To emulate sound localization based on the ITD, Sun et al.102
demonstrated precise temporal computation for the identification of

8| J. Name., 2012, 00, 1-3

acoustic sound locations using the intrinsic synaptivicapability.ief
short-term synapses. Based on the Joul@qéEQih%ggéRaMmg%ﬁg
doping-induced metal-insulator transitions in a scalable monolayer
MoS, device, synaptic computation was conducted to process a given
acoustic signal, as shown in Fig. 7a. The memristor device was
designed with a biologically comparable energy consumption (10 fJ),
and tunable STP was demonstrated by the flexible doping level of
MoS,. A circuit with this tunable synaptic device achieved ITD
detection, emulating precise temporal computations in the human
brain by suppressing the sound intensity- or frequency-dependent
synaptic connectivity.

The integration of piezoelectric micromachined ultrasound
transducer (pMUT) sensors into a neuromorphic RRAM-based
computational map has been reported to demonstrate real-world
sensory processing in object localization.193 As shown in Fig. 7b, an
event-driven auditory processing system applied to object
localization was developed using an in-memory computing
architecture. Inspired by the neuroanatomy of the barn owl, which is
known to be an efficient auditory localization system with hunting
capabilities during the night, the time-of-flight (ToF) of the sound
wave was encoded, and the difference between the two ToF
measurements (ITD) was analyzed to identify the sound location. The
energy efficiency of object localization was realized by exploiting
event-driven RRAM-based neuromorphic circuits that processed the
signal information produced by the embedded sensors to calculate
the position of the target object in real time. Unlike conventional
sensory systems that continuously sample and calculate the detected
signal to extract useful information, this energy-efficient auditory
system performs asynchronous computations as useful information
arrives.

Moreover, with the integrated 1 K HfOx-based analog memristor
array and a multithreshold update scheme, the in situ learning ability
of the sound location function was demonstrated.'%* As shown in Fig.
7¢, a brain-like learning algorithm and architecture for the sound
location function were successfully realized, demonstrating the
capability of processing sound signals from two artificial ears. With
high accuracy (45.7%) and energy efficiency (184x) compared to
existing methods, it demonstrated a significant advancement toward
realizing advanced auditory localization systems.

5.2. Speech recognition

Speech recognition, a key requirement for artificial intelligence
machines to communicate with humans, has been widely developed
in software-based neural networks. However, the long latency and
large storage requirements for large amounts of voice data in speech
recognition tasks in the existing von Neumann architecture pose
limitations. Therefore, energy-efficient neuromorphic computing
systems have a significant potential for processing audio signals. In
this subsection, several memristive-based artificial auditory systems
with highly accurate and efficient speech recognition performances
are presented.

This journal is © The Royal Society of Chemistry 20xx
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A TiN/HfOx/TaOx/TiN memristor device that features a multileveR
analog resistive state was developed.1% The artificial cochlea-basé®
circuit was used to experimentally demonstrate the filteribgl
behaviors of five channels with different central frequenci&5
Consequently, when connected to a convolutional neural netwok6
as shown in Fig. 8a, it achieved the extraction of speech featurds/
demonstrating the feasibility of a highly efficient artificial cochleaB
59

system.

An artificial van der Waals hybrid synapse was developed afd
demonstrated using acoustic pattern recognition. Its superior
conductance controllability was achieved using WSe, and Mo§1
hybrid channels, which are specialized for linear and symmetgQ
conductance change characteristics.’% The hybrid synaptic devigg
was used to perform acoustic pattern recognition (from recordirg4
transforming, and integrating) with high accuracy (93.8%), as shov@gs
in Fig. 8b, indicating its potential for brain-inspired computing. g6

67
Speech recognition using a memristor array (W/MgO/SiO,/Mo) witt8
multilevel conductance has also been demonstrated (Fig. 8c).89
Speech recognition in a memristive SNN was achieved by precisel{)
tuning the weights of the artificial synapses. For effective and spardd
spatiotemporal feature extraction, a one-dimensional elf-organizid@
map (SOM) network was used, which essentially operated to achieve
high performance and simplify the SNN classifier. Compared to othgg
ANN-based systems, the advantages of a simplified structure aryd]
high energy efficiency have been demonstrated in memristive SNIy§
for speech recognition tasks. 76

77
Memristors have demonstrated excellent performance in convertid
acoustic signals into electrical signals for artificial auditory sensofp
systems. However, a significant portion of the processing, such 86
post-processing and learning of the converted signals, still reli@d
heavily on software-based computations and simulatioi@2
Additionally, there is potential for applications that can redu83
sensitivity or block sounds in response to sudden loud noises, b8&
further research is needed to explore and develop these possibilitid5
86
87

6. Memristor-based olfactory sensory system 28

The integration and coordination of the olfactory receptors, cort%
and muscles enables humans to recognize and memorize od
stimuli and respond to specialized gases. In the biological olfact
sensory system, odorants from the environment are detected
olfactory receptors, which trigger electrical signals as the output.
Spike signals are generated by the olfactory sensory neurons and
transmitted through the olfactory bulb, where signal preprocessin
is performed. Finally, the preprocessed signals are transmitted I3
higher regions of the brain (olfactory cortex) to identify ai
memorize odors.1%8112 Among the various perceptions, olfactionTs
particularly complex and vague because of the complexity of tf('?e8
chemosensory system, which must distinguish and quantify gas
molecules in constantly changing environments. Therefore, these
olfactory processes can provide information on complex sm%l?sl
which in turn can provide key guidance for awareness, decision-
making, and action in the surrounding environment. 103
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Despite the importance of the olfactory system, relativelyofew
studies have been conducted because of its8mipléRity.Hereramsa
challenge to completely emulate the functions of the human
olfactory system in recognizing, memorizing, and inducing muscle
movements in response to dangerous gases. Section 6 introduces
various artificial olfactory systems based on the functions of the
human olfactory system, including odor recognition, memorization,
and protection in dangerous and gaseous environments.

6.1. Odor recognition and memorization

The olfactory system, comprising thousands of different types of
receptors and classifiers, enables humans to recognize and
memorize odors. Stimulated by odorant molecules, specific spikes
are generated by the olfactory receptors and analyzed using neural
networks. Following learning and training, humans recognize
different odors through memorization using olfactory systems.
Although various strategies have been proposed to construct
artificial olfactory systems, most studies have focused on developing
systems that use gas sensors and complex neural networks. Recently,
a bioinspired memristor-based olfactory system with perceptual
learning and memorization abilities was developed to classify several
different gases.

Qifeng Lu et al. developed a hybrid flexible gas-detection system
utilizing NiO nanowall-based gas sensors, oscillators, and graphene-
based memristor-based synapses. In this system, the signals
generated by the gas sensor are converted into pulses by an
oscillator, and the frequency of these pulses varies based on the
resistance of the gas sensor. The stimulation of H,S gas at various
concentrations was converted into pulse signals.'’3> The altered
pulses became presynaptic signals transmitted to the synaptic
devices, resulting in changes in the resistance (synaptic weight) of
the graphene-oxide-based synapse memristor. Resistance
modulation influences information processing and storage using
synaptic memristors. The system implements learning capabilities
based on the k-nearest neighbor (KNN) algorithm, which efficiently
categorizes unknown gas stimuli into the most probable categories
by comparing them with pre-learned boundaries. The gas-detection
system demonstrated enhanced recognition capabilities through
iterative learning. Initially, the error rate exceeded 45%; however, as
the number of learning iterations increased, the error rate
progressively decreased to approximately 20%. This methodology
enhances the practical application of gas-detection systems and
ensures reliable data analysis.

In addition to the mere recognition of a single gas, olfactory systems
have been reported to enable the detection of various gases.!* The
reported system utilizes an array of gas sensors along with neurons
and synapses to form an olfactory sensory system capable of
effectively analyzing complex gaseous environments. An array of gas
sensors capable of detecting four different gases (formaldehyde,
ethanol, acetone, and toluene) at various concentrations was used
to effectively monitor diverse gaseous environments. In a gaseous
environment, the resistance changes in each sensor adjusted the
intensity of the voltage applied to the series-connected neuronal

J. Name., 2013, 00, 1-3 | 9
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memristor (Pt/Ag/Ta0,/Pt) (Fig. 9a). These modifications to the inph¥
voltage translate the chemical information of the gases into electri@8
spikes in the neuron memristors, thereby providing information &9
the gas-detection capabilities of the entire system. The spike€)
generated in each neuron are transmitted to a synaptic arrGyl
(Pt/Ta/Ta0,/Pt), where they undergo learning and training througi2
spike rate-dependent plasticity (SRDP). This process enables tb3
storage of gas characteristics in memristor devices. Based on matrf4
vector multiplication, the system can effectively classify fo@b
different types of gases. This system enables the preci6®
identification and quantification of gases with distinct chemi&V
properties, which is highly beneficial for environmental monitoring.
Furthermore, these memristor-based sensory systems overcorg®
efficiency problems encountered in existing artificial sensory
systems, such as frequent sampling, data storage, and transfer. Hey
et al. reported that sensors with differing sensitivities to the samg)
gas were serially connected to memristor-based neurons, proposing
an olfactory system capable of clearly recognizing and differentiath?@
mixed gases.!'> In this system, gas exposure alters the resistance ?§
the gas sensors, modifying neuronal frequency, which can be us

for gas detection. Sensors based on SnO, and WOj3 exhibit differe175
resistance changes in response to the same gas, leading to distinﬁB
neuronal firing frequencies. This configuration enables the artificiﬁ;
olfactory system to distinguish unknown gases more accurate|78
Furthermore, integration with SNNs has enhanced the ability of tlyg
system to identify various types of reducing gases (NHs, CO, acetongy)
NO;). The introduction of additional hidden layers in the SNNs
further improves the recognition of more complex gas mixtur

highlighting its potential for environmental monitoring and safeéyé
applications. 83

84
Currently, gas recognition and memory require additional £8s;

sensors and circuits, which adversely affect the power consumptiglg
and miniaturization of the device. Chun et al. reported a systegy
capable of recognizing and remembering gases without requirigg
additional devices or circuits by employing materials in synapiig
memristors that exhibited both gas-detection capabilities agb
resistive change properties, as depicted in Fig. 9b. A synapgcl
memristor based on Pt/TiO, NR/TiN can directly detect gases aedh
remember them through changes in the resistance state.!'® The Tigg
material, the oxide layer of synaptic devices, is not only used fgﬂ
resistive switching in synaptic memristors but is also employed fgs
gas detection in conventional gas sensors. When a synapg
memristor is exposed to H, gas, the gas reacts with TiO, to generage
oxygen vacancies, promoting the growth of conductive paths a%
decreasing resistance. Conversely, exposure to NO gas removgg
oxygen vacancies, causing disruptions in conductive paths and
increasing the resistance. The synaptic device detects changeg i
resistance due to gas exposure and stores information regarding
exposure. This process enables accurate recording of informat_{
related to gas detection and provides reliable environme
monitoring. This technology plays a crucial role in measuring
managing gas concentrations in various environments. In addit]
the gas detection capability of a single memristor can be effecti
applied to mixed-gas recognition. Beyond conventional gas-se
arrays, a new approach has been reported to leverage the unique
selectivity of various materials to construct memristor arrays. This

10 | J. Name., 2012, 00, 1-3

study utilized SnO,, HfO,, and Ta,0s-based memristors,which exhibit
resistance changes in response to gas intera&idn’0 TRé3EMBR*LETS
demonstrated varying sensitivities to specific gases and
concentrations, enabling the simultaneous detection of mixed gases.
A parallel array significantly improved the accuracy of mixed-gas
concentration predictions, outperforming single-device systems by
over 796% compared to individual Ta,0s-based sensors. This
advancement underscores the potential of memristor-based sensor
technology to enhance environmental monitoring and improve the
accuracy and reliability of gas detection in complex gas
environments.*’

6.2. Protection in dangerous gas environment

The olfactory system plays a crucial role in human awareness,
perception, and action in response to diverse external gaseous
stimuli. The coordination of olfactory receptors and muscles enables
humans to respond to specific gases, which is crucial for protection
in dangerous environments, such as in the case of leakage of toxic
gases or rooms on fire. However, studies on the functions of the
human olfactory system based on memristor devices involving
perception, memorization, and self-protection movements are
lacking. To emulate a complete olfactory system, an artificial
olfactory system should be developed to memorize gas information
and control muscles to ensure self-protection in dangerous
environments.

Recently, bioinspired olfactory systems that enable the perception
and memory of specific gases with the ability to act in the presence
of certain gases have been reported. Gas-sensing visualization using
a smart robot was developed for real-time gas monitoring by
integrating gas sensors and memory devices (Fig. 10a).1® The robot
was equipped with an artificial olfactory memory system developed
to recognize and memorize volatile organic compound (VOCs) gases
at different concentrations. The integration of the sensor and
memory unit facilitated the switching of the synaptic memristor in
response to the VOCs gas and recorded the target gas information
after the gas stimuli disappeared. Additionally, the system was
reconfigured with an LED to enhance the gas detection visualization.
When concentrations of VOCs were detected below the threshold,
the LED remained off. However, if the VOC concentration exceeds
the threshold, the LED immediately brightens and remains on. These
capabilities of the olfactory system present great potential for future
humanoid robots, environmental pollution control, and early
warning of chemical and biohazard safety to alert and respond to
emergencies in dangerous environments.

In addition to warning about hazardous gases, the flexible artificial
olfactory system shown in Fig. 10b can recognize, memorize, and
perform self-protection actions for NH; and was developed by
integrating Sr-ZnO-based gas sensors, HfO,-based memristors, and
electrochemical actuators.'® The gas sensor and synaptic memristor
are connected in series, such that changes in NH3 concentration alter
the resistance of the gas sensor, which modifies the voltage intensity
applied to the synaptic memristor according to the voltage division
rule. Thus, the external chemical signals are conveyed as changes in

This journal is © The Royal Society of Chemistry 20xx
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the electrical signals to the memristor through the resistanbd
variation of the gas sensor. This process plays a crucial role 54
translating chemical stimuli into electrical signals. When exposed 5&
specific concentrations of NHs, the resistance of the gas sensbb
decreased sharply; consequently, a voltage (set voltage) sufficient to
switch the synaptic memristor was applied. When the NBY
concentration was low, the memristor remained inactive, causif8
the actuator to remain unresponsive and the gas to flow normallyg
Conversely, as the NHsz concentration increased, the olfactogp
memory device was activated, causing the actuator to bend inwagd
and close into a conical shape, thereby preventing gas from enterig@
the nasal cavity. Thus, the activation of the memristor triggers t%%
movement of the electrochemical actuator to block the gas fl

channel, mimicking the self-protective action of the induced muscé%
movement of the hand when it smells NHs. 66

This section highlights the effective utilization of memristor-bas
olfactory systems in humanoid robotics and environmen
monitoring. However, these systems face inherent limitations in
selectivity and sensitivity to various gases. Moreover, there is a neé
to develop systems that can detect external gases in real time,
process the data, and execute appropriate responses. This appranI'z
facilitates rapid and accurate reactions to gas leaks and chemichB
hazards, significantly improving the efficiency of environmentAd

monitoring systems. 75
76
7. Conclusions and Perspectives 77
78

Memristive artificial sensory systems, inspired by the energz-9
efficient architecture of biological systems, have been developed &0
overcome the technological limitations of conventional CMOS-bas&d
systems. Memristors can emulate the receptors, neurons, ag@P
synapses—the fundamental components of biological sensogg
systems. Building on this foundation, memristors enable highegz
order functions such as learning, inference, and hazard detection 8‘5
mimicking specific biological sensory systems. Table 1 summarizg%
how various memristors emulate biological components a
implement sensory characteristics, demonstrating that memristive
artificial sensory systems can effectively replicate the four maj
human senses.

90

In this review, we suggested the emulation of receptor, neuron, agcil'
synapse properties using memristors based on an understanding %g
their inherent characteristics. Volatile memristors exhibit switchiﬁé
behavior, transitioning to an ON state when stimuli exceed a speciﬁél
threshold and returning to the Off state when stimuli are removedd
This behavior is suitable for simulating receptors and neurons. as36
closely resembles the "threshold" and "relaxation" responses 87
biological receptors. In addition, by adjusting stimulus intensity a®@
duration, volatile memristors can replicate biological phenomef®
such as adaptation and sensitization. Moreover, their behatigQ
closely resembles “the ion channel dynamics” observed in neurqmyg
When connected to an external circuit, volatile memristors oD
effectively model spike generation, including LIF and HH models, as
well as neuron spike shapes. Non-volatile memristors, by contrast,
alter their resistance in response to an applied bias and retain their

This journal is © The Royal Society of Chemistry 20xx
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resistance even after the bias is removed. This characteristicialiows
them to mimic the information storageD?ﬂ:r%&?gr?gg%S%%%ch%ﬁ
synapses, where resistance modulation corresponds to "synaptic
weight" adjustments in response to neural stimuli.

We then discuss the implementation of the four major senses—
tactile, visual, auditory, and olfactory—in the memristor-based
artificial sensory system, asiillustrated in Fig. 11. Notably, memristors
enable comprehensive coverage of previously unachievable
functionalities that play crucial roles in sensory systems and offer
efficient energy consumption compared to CMOS-based devices and
memristors (Table 2). In artificial tactile systems, advancements in
memristor material and structural design have enabled the effective
emulation of receptor characteristics such as "sensitivity" and
"adaptability," which were previously challenging to emulate. For
example, the system demonstrates a function in which the output
This
contradicts the conventional belief that reliable signal conversion
requires a consistent output for identical inputs. This aligns with the

gradually decreases in response to innocuous stimuli.

operational tendencies of biological sensory systems. In the artificial
Visual system, memristors emulate neuron-spiking models with high
precision to simulate the functions of biological photoreceptors. By
reducing the output in response to sudden increases in input signals,
the system facilitates "light intensity detection" and "self-
protection." Notably, it efficiently extracts and delivers only essential
information for actions, such as collision avoidance or blinking, from
vast visual data inputs. Furthermore, while nociceptors have
the
development of nociceptive functionality that is responsive to visual

predominantly been implemented for tactile stimuli,

stimuli is particularly remarkable. In the artificial auditory system,
the memristors are connected to additional circuits that emulate the
filtering function of the cochlea. This system is designed to recognize
only specific sound amplitudes based on memristor resistance,
enabling "speech recognition" in the biological auditory system. This

represents a significant advancement in artificial auditory systems. In
the artificial Olfactory system, memristors fabricated from gas-
sensitive materials integrate sensing and switching characteristics.
This approach allows the detection of external stimuli without an
additional circuit. Furthermore, memristor resistance varies
depending on gas type, allowing for "recognition and memorization"
of specific gases. These findings break the conventional stereotype
that receptors are solely responsible for stimulus detection while
synapses manage information storage. Instead, they demonstrate
that bioinspired and highly efficient system architectures can
perform multiple functions within a single device. Besides,
conventional CMOS-based artificial neural systems struggle to
implement advanced sensory functions. Even if achievable, such
implementations typically require significant energy consumption
and extended processing times. In contrast, memristor-based
artificial sensory systems can efficiently emulate these advanced

functions.
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While memristor-based artificial sensory systems demonstrab&
extensive potential, key challenges remain to be addressen9
Although progress has been made in wusing memristors
independently to detect stimuli and mimic sensory system functions,
system-level integration remains challenging. Most implementatioﬁp
still rely on additional sensors and circuits primarily used for signgi
conversion, such as translating the firing frequency of artificgp
neurons into a form that other components can process. Howevgg
improving the energy efficiency of this conversion process has ngg
been well explored. Although memristors themselves consume nJ gz
pJ-level low energy, integrating them with CMOS-based systems
often introduces mismatches in electrical parameters, requiring
additional circuitry for voltage conversion, signal processing, afb
computation. This increases system complexity and overall energﬁ
consumption, limiting memristors' ability to mimic biological sensory
systems fully. Moreover, if memristors cannot be fabricated using
CMOS-compatible materials and processes, chip-level integratigg
becomes extremely challenging. Without chip-level integration,
memristors and CMOS-based devices or circuits must
implemented separately, leading to undesirable consequences su

as signal transmission noise, increased energy consumption, a
larger system area. For instance, Section 4.2 discussed a memristor-
based model mimicking the LGMD neuron, which was integrated into
a car robot to generate avoidance behavior based on optic inpity
signals. However, implementing this system required power
management chips for voltage conversion and counter circuits f
spike frequency calculation, leading to a complex structure wiZﬁl
additional energy consumption. Unfortunately, current researZI$
primarily focuses on enhancing the performance of individtzaxﬁ
memristor devices, with limited studies addressing CMgg
compatibility and efficient architectures for seamless integratigrg
with CMOS-based systems. Therefore, developing a more advanced
memristor-based architecture is essential to enable practical a
energy-efficient system integration. Furthermore, addressing the
following challenges is imperative for the advancement of artificB0
sensory systems. First, research on advanced data processing &l
perform complex tasks is required. Efficient management
spatiotemporal data requires multiple memristors working
conjunction, along with mechanisms to compare and integrate d
from each device. Recent studies have primarily focused on sin%
memristors, with limited algorithms developed for arrays or circuitsy
To mimic biological intelligence, it is essential to establigg
interconnections among memristors and integrate their functiorf@9
Additionally, research on integrated system-level memristor-bas&d
receptors, neurons, and synapses is significantly lacking. To constri@d
artificial sensory systems, memristors emulate and integragt_2
receptors, neurons, and synapses. However, most studies focus P
them in isolation rather than as part of a cohesive system. Achievi
more efficient conversion and data processing between syst
components is essential for accurately replicating biological sens
functions. For artificial sensory systems to function reliably, resear%
must focus on compatible signal conversion between the pre- ang
post-components. These investigations have the potential1@®
advance the overall integration of sensory systems by enabliGd
electrical processing of neural signals for information transmissi@2
and ensuring accurate execution of output signals. In conclusion, 103
review provides a framework for implementing memristive artifitdt

12 | J. Name., 2012, 00, 1-3

sensory systems based on the characteristics \efy sbielogical
components and switching properties of méttisth839/D5MHO0038F
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Fig. 5 (a) Schematic illustration of the integrated 1PT1R structure device and light-tunable conductance update performance of the device. Reproduced with
permission from ref. 93. Copyright 2023 John Wiley and Sons (b) Schematic illustration of light-induced synaptic modification mechanism based on photo-
induced redox reaction and current response after UV/Vis light irradiation. Reproduced with permission from ref. 94 Copyright 2021 John Wiley and Sons (c)
Bio-inspired HH neuron for artificial retinal system with firing frequency modulated in a manner similar to photopic/scotopic adaptation of a biological
photoreceptor. Reproduced with permission from ref. 95. Copyright 2022 John Wiley and Sons
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Fig. 7 (a) Schematic of the human auditory perception system and monolayer MoS,-based device with Joule heating-driven conductance facilitation. ITD-
based sound localization can be achieved by suppressing interference and encoding only ITD information through artificial synaptic computation comprising
the MoS, device. Reproduced with permission from ref. 102. Copyright 2021 American Chemical Society (b) Object localization system in barn owls and
proposed bio-inspired technology. Response varies across population, impacting both input gain and time constant. Owing to neuron-to-neuron variability,
two output neurons of direction-sensitive coincidence detector respond differently to input stimuli. Thus, sound source can be identified. Reproduced with
permission from ref. 103. Copyright 2022 Springer Nature (c) Conceptual diagram of memristor-based neuromorphic sound localization system. Multiple
binaural features applied for neural processing to detect sound sources, including binaural time difference, spectral shape, etc. Reproduced with permission
from ref. 104. Copyright 2022 Springer Nature
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device switching (blue lines), and higher output frequencies (orange lines). Training loss and testing accuracy of detection gas. Reproduced with permission
from ref. 103. Copyright 2022 John Wiley and Sons (b) Schematic of biological olfactory cognitive process mimicking using chemi-memristive sensor.
Response curves upon exposure to 1% H, and /-V curves of TiO, NRs. Conductance modulations based on type of target gas (reducing or oxidizing).
Reproduced with permission from ref. 104. Copyright 2023 John Wiley and Sons
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Fig. 10 (a) Sensory information provided by volatile organic compounds sensed by olfactory sensory receptors. Demonstration of robot equipped with
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actuator array. Reproduced with permission from ref. 119. Copyright 2021 Elsevier
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Fig. 11 Schematic of biological and artificial sensory systems with a memristor.
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Sense Memristor Materials & Structure Biological Counterpart Specific feature Ref
. Mechanoreceptor
Non-volatile
Ag/CsPbBr;/PVA/FTO Synapse (Pressure) 120
. Mechanoreceptor
Non-volatile
Al/CS:MWCNTSs/ITO Synapse (Pressure) 121
@ Non-volatile Mechanoreceptor
§ Tactile Ag/TiO,/TisC,Tx/Au Neuron (Pressure) 122
(]
<
3 Volatile
‘é Al/ZnO/FTO Synapse Nociceptor 123
5 Volatile Mechano.re-ceptor
g Ag/c-YY NW/Ag Neuron (Huminity) 124
o . Scotopic
S Volatile R .
o) Al/Ag NW-embedded SA/SA/ITO Synapse/Neuron /photopic adaptation 125
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Q Visual - -
g Volatile ITO/Ta,0s/Ag/IGZO/ITO Neuron Color recognition 127
S
z Volatile/non-volatile FTO/NiO/Organic Interlayer/PMMA/Ag Synapse Color recognition 128
c
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Z Volatile
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IS
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8 Non-volatile
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8] Non-volatile
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5 _
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§ Non-volatile Ta/m-Zr0O,/Pt Synapse Odor recognition 134
@
o olf Non-volatile
% actory Al/pectin:Ag NPs/ITO Synapse Odor recognition 135
,é’ Volatile/non-volatile W/WO3/PEDOT:PSS/Pt, Pd/W/WOs/Pd Synapse/Neuron Gas-Classification 136
= Non-volatile -/TiO, Nanowire/ Ti Sensor Odor recognition 137
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Structure Operating voltage Switching Speed ION Ref

Sn-doped polycrystalline §-

Ga,0, FET 10V (VD) 05s - 138
g Ag/SnSe/Au Set:0.474 55ns 10 pA 139
pr
3 Set:-0.72V
s Pt/Ag/SiO2 NRs/Ag/Pt 20 ps 1 pA 81
5 +0.78V
=)
%)
3 Vo:-1V
8 g Si-based MOSFET 0.1s ~ 150 pA 140
& E Vp:>35V
N e
8‘ § Ve:12V
o & - . . . G
S’) % S|/S|02/S|:\L|\lé)/ssllg12_/5| based 0.02s ~ 150 yA 141
Q2 Vpi>3V
£
.
g é Pt/Ag/Ta0,/Pt Set:0.29V 80 ps 0.1 pA 114
£
20O
ag Ag/MoS, nanosheet/
(LQ' § Set:0.3V 16 ns 100 pA 31
I 5 Ag/MoO,/Ag
g ©
EZ
5 5 Pt/Ag/Zn0O/Pt Set:0.17V = 50ns 10 pA 142
5
.8 ‘g
? 2 Write: 1.8 V (Vg)
E g Si/WO,/Si0,-based FET 0.3ms - 143
T O Erase :-2.5 (Vg)
T =
T ®
€ 0
= Write: 20 V (Vg) 100 ms (Write)
IGZO channel-based FET ~ 10 pA 144
< Erase :-20 V (V) 10 ms (erase)
o3
jol
(e}
Set: 0.6V
Pd/WS,/Pt 14 ns 1pA 145
| Reset:-0.2V
Set:0.61V
Al/PVP-CdSe QD/AIl 41 ns 5.2 pA 146
Reset:-0.5V
Set:1.08V
ITO/CdS QDs-PVP/AI 42 ns 4.44 pA 147
Reset:-0.72 V
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