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Wider impact

The implementation of artificial sensory systems is essential for converting vast amounts of 

environmental information into input signals required for neuromorphic computing. When 

realized using memristors, such systems effectively compress signals during the conversion 

process while retaining adaptive, nociceptive, and spatiotemporal information critical for 

learning and inference. Furthermore, their compatibility with a wide range of sensors ensures 

excellent expandability, while the dynamic resistive switching properties of memristors enable 

diverse signal conversion strategies. Memristor-based artificial sensory systems not only 

emulate human sensory processing but also offer significant advantages in terms of energy 

efficiency and miniaturization, making them highly suitable for edge computing and wearable 

technologies. Their ability to perform parallel signal processing can also enhance real-time 

decision-making in complex environments. Gaining insights into memristor-based artificial 

sensory systems, which process patterned sensory data akin to human perception, can drive 

future advancements in neuromorphic computing, industrial automation, and robotics.
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Memristive Neuromorphic Interfaces: Integrating Sensory 
Modalities with Artificial Neural Networks
Ji Eun Kima,b†, Keunho Sohc†, Suin Hwangc, Do Young Yangc, and Jung Ho Yoonc*

The advent of the Internet of Things (IoT) has led to exponential growth in data generated from sensors, requiring efficient 
methods to process complex and unstructured external information. Unlike conventional von Neumann sensory systems 
with separate data collection and processing units, biological sensory systems integrate sensing, memory, and computing to 
process environmental information in real time with high efficiency. Memristive neuromorphic sensory systems using 
memristors as their basic components have emerged as promising alternatives to CMOS-based systems. Memristors can 
closely replicate the key characteristics of biological receptors, neurons, and synapses by integrating the threshold and 
adaptation properties of receptors, the action potential firing in neurons, and the synaptic plasticity of synapses. 
Furthermore, through careful engineering of their switching dynamics, the electrical properties of memristors can be 
tailored to emulate specific functions, while benefiting from high operational speed, low power consumption, and 
exceptional scalability. Consequently, their integration with high-performance sensors offers a promising pathway toward 
realizing fully integrated artificial sensory systems that can efficiently process and respond to diverse environmental stimuli 
in real time. In this review, we first introduce the fundamental principles of memristive neuromorphic technologies for 
artificial sensory systems, explaining how each component is structured and what functions they perform. We then discuss 
how these principles can be applied to replicate the four traditional senses, highlighting the underlying mechanisms and 
recent advances in mimicking biological sensory functions. Finally, we address the remaining challenges and provide 
prospects for the continued development of memristor-based artificial sensory systems.

1 1. Introduction

2 The growing demand for automation in supply chains, 
3 manufacturing, robotics, and unmanned vehicles has driven the 
4 development of artificial intelligence (AI) technologies. These 
5 technologies have the potential to significantly improve efficiency 
6 and autonomy across various industries using sensory systems 
7 comprising sensors and computational networks to sense the 
8 surroundings and acquire information from the environment in real 
9 time.1, 2 For instance, conventional complementary metal-oxide 

10 semiconductor (CMOS)-based systems have demonstrated 
11 intelligent recognition and control applications, such as image 
12 classification, natural language processing, and decision-making 
13 tasks.3-10 However, because the von Neumann architecture 
14 physically separates memory and processing units, conventional 
15 systems require massive amounts of data transfer between them. 
16 This results in high power consumption and causes significant 
17 latency, commonly referred to as the von Neumann bottleneck, 
18 which fundamentally degrades the performance of AI applications.11-

19 14

20 Unlike conventional systems, biological sensory systems detect, 
21 interpret, and store external information in a data-parallel and 
22 integrated manner.15 This is enabled by receptors that generate 
23 electrical signals only when stimuli exceed a threshold, selectively 
24 adapting to harmless, repetitive inputs. These signals are transmitted 
25 as action potentials (spikes) through neurons to specific brain regions, 
26 where they are processed in an event-driven, adaptive, and parallel 
27 manner, enabling learning and inference.16, 17 Inspired by the energy-
28 efficient and fault-tolerant nature of biological systems, 
29 neuromorphic computing has been developed to overcome the 
30 technical limitations of conventional CMOS-based systems.18-21 It 
31 supports the integration, processing, and storage of sensory 
32 information, playing a crucial role in advanced functions, such as 
33 decision-making, cognition, learning, and memory. Moreover, 
34 neuromorphic computing can execute multiple tasks simultaneously 
35 in highly parallel settings with a low power consumption of 1–100 fJ 
36 per synaptic event.22 The exceptional capabilities of memristors 
37 enable their integration with neuromorphic learning algorithms to 
38 facilitate advanced functions. Large-scale integration and hardware 
39 implementation using CMOS-compatible processes are essential to 
40 leverage these capabilities, with extensive research currently 
41 underway. The technology has now advanced beyond hybrid 1T1R 
42 structures, reaching a stage where fully memristor-based hardware 
43 implementations are feasible. This progress has demonstrated the 
44 practical applicability of memristors across various AI applications, 
45 validating their potential for widespread deployment.23-27

46 Therefore, it is crucial to implement artificial sensory systems 
47 capable of mimicking the roles of biological receptors, neurons, and 
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1 synapses to fully leverage neuromorphic computing.28-31 Although 
2 conventional CMOS-based electronics have been used to develop 
3 artificial synapses and neurons as neuromorphic devices, they are 
4 limited by circuit area and energy efficiency.32-34 Since the CMOS-
5 based devices are optimized for digital switching, they struggle to 
6 handle smooth and continuous signal variations, which are essential 
7 for accurately reflecting external stimuli. Thus, essential functions 
8 such as the accumulation of external stimuli, the generation of 
9 corresponding output signals, and information storage inevitably be 

10 performed by separate components. As a result, the emulation 
11 process compromises both area and energy efficiency in proportion 
12 to the number of devices used.35 Moreover, implementing analog 
13 switching to achieve both the precision and dynamic range required 
14 for emulating biological counterparts remains a significant challenge 
15 in conventional CMOS-based systems. These systems necessitate the 
16 incorporation of additional circuitry, such as Digital-to-Analog 
17 Converters (DACs), to facilitate analog switching. Although more 
18 complex DAC configurations are required to enhance the output 
19 resolution, the resulting output often lacks the desired smoothness. 
20 Meanwhile, among various neuromorphic devices, the memristor 
21 stands out for its area-efficient structure as well as high-speed and 
22 low-power operation. Additionally, their excellent scalability, 
23 durability, and uniformity make them well-suited for the reliable 
24 implementation of artificial sensory systems.36-40 Furthermore, a 
25 unique attribute of memristors is their ability to gradually switch 
26 between a low-resistance state (LRS) and a high-resistance state 
27 (HRS) in response to external stimuli, such as voltage or current. In 
28 other words, memristors exhibit continuous and dynamic resistive 
29 state changes rather than relying on binary resistance states. This 
30 enables the direct processing of analog external stimuli without the 
31 complex configuration of using multiple devices or peripheral circuits 
32 such as analog-to-digital converters. Therefore, the dynamic resistive 
33 switching provided by memristors is essential for replicating the 
34 artificial sensory system, as it more efficiently captures the full 
35 fidelity of incoming signals. Owing to these advantages, memristors 
36 have been widely utilized in the implementation of artificial 
37 receptors, synapses, and neurons.41, 42 In particular, their material 
38 composition, device structure, and switching dynamics can be 
39 carefully engineered to optimize switching behavior, making them 
40 adaptable to both volatile and non-volatile properties—key 
41 characteristics for mimicking biological elements.34, 43-51 Thus, 
42 integrating memristive devices with various sensors facilitates the 
43 implementation of artificial sensory systems corresponding to 
44 tactile, visual, auditory, and olfactory modalities.52, 53  

45 In biological sensory systems, sensory receptors located in the 
46 sensory organs convert external perceptual signals into receptor 
47 potentials, and sensory neurons integrate these potentials to initiate 
48 action potentials. Finally, the synapses store the encoded sensory 
49 information. Similarly, in a bioinspired memristive sensory system, 
50 sensors generally convert external stimuli into electrical signals, 
51 which are then applied to memristors. Subsequently, the memristive 
52 receptor device that receives the signal generates a potential that is 
53 proportional to the input, incorporates information regarding 
54 harmful stimuli, and transfers it to the subsequent sensory system. 
55 Subsequently, the integrated memristive synapse and neural devices 
56 respond to input signals in a manner analogous to biological 

57 perception systems. By mimicking the biological sensory system, the 
58 integration of sensory, processing, and memory components in 
59 bioinspired memristive systems enables high power efficiency, low 
60 latency, and excellent processing capabilities.

61 Despite the versatility of memristors, current research has 
62 predominantly focused on signal conversion based on their switching 
63 characteristics. This approach has contributed immensely to the 
64 advancement of neuromorphic computing by enabling reliable and 
65 direct conversion of external stimuli into signals that drive neural 
66 networks implemented in hardware and software. However, studies 
67 on how closely these conversions align with the behavior of the 
68 human nervous system are lacking. The existing memristor-based 
69 systems often fail to fully capture the intricate dynamics of biological 
70 sensory systems, particularly in terms of complexity and adaptability. 
71 Devices capable of replicating the full range of functions of biological 
72 receptors, neurons, and synapses remain exceedingly rare. Even at 
73 the individual level, most artificial systems struggle to replicate all 
74 the critical functions of a single biological element. In artificial 
75 sensory systems, this limitation is further compounded by the 
76 frequent exclusion of specific functions or entire elements, resulting 
77 in incomplete or inefficient performance. This highlights a critical 
78 challenge: implementing all essential characteristics necessary for 
79 effective emulation. For artificial sensory systems to accurately 
80 process external stimuli across diverse environmental conditions, 
81 several crucial properties must be considered, including sensitivity, 
82 adaptability, and spatiotemporal processability. For instance, 
83 biological systems can dynamically adjust their sensitivity to external 
84 stimuli, such as by enhancing auditory perception in noisy 
85 environments or modulating visual processing under low light. 
86 Emulating this adaptability requires devices capable of self-tuning 
87 and learning in response to changing environmental conditions. 
88 Moreover, processing spatiotemporal patterns—similar to biological 
89 synapses responding to time-dependent signals—remains essential 
90 for replicating complex sensory functions. A systematic 
91 understanding of these properties is fundamental to developing 
92 artificial sensory systems that process complex input patterns with 
93 greater accuracy and efficiency.

94 In this review, the recent advances, challenges, and prospects of bio-
95 inspired memristive artificial sensory systems are comprehensively 
96 examined. In this context, the switching performance metrics 
97 required for memristors in the implementation of artificial sensory 
98 systems, as depicted in Fig. 1, along with the sensory modalities they 
99 aim to emulate, are discussed. The subsequent sections first explore 

100 the fundamental roles of receptors, neurons, and synapses in 
101 biological sensory systems, along with the corresponding switching 
102 characteristics of memristors essential for replicating these neuronal 
103 components. Next, innovative cases of bio-inspired artificial sensory 
104 systems developed for the four primary senses—tactile, visual, 
105 auditory, and olfactory—are presented. Recent memristor research 
106 progress is then examined, focusing on how closely these systems 
107 mimic biological sensory functions and evaluating the effectiveness 
108 of these advancements. Finally, challenges and prospects for the 
109 development of memristor-based artificial sensory systems are 
110 addressed. This review aims to encourage ongoing research and 
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1 development, fostering a deeper understanding and broader 
2 application of bio-inspired sensory systems by analyzing the roles of 
3 receptors, neurons, and synapses, the switching dynamics of 
4 memristors, and the necessary characteristics for each type of neural 
5 implementation.

6 2. Element of the nervous system: Receptor, 
7 Neuron, and Synapse

8 To emulate the characteristics of receptors, neurons, and synapses 
9 using memristors, a comprehensive understanding of their 

10 operational mechanisms is required. Additionally, investigating the 
11 switching properties of memristors and exploring how these 
12 properties can be utilized to mimic each component are essential. 
13 This process is crucial for precisely controlling the electrical 
14 characteristics of memristors and effectively reproducing the 
15 complex functions of the nervous system, as shown in Fig. 2.

16 2.1 Receptor

17 Receptors play a crucial role in detecting and responding to various 
18 stimuli, enabling us to perceive and interact with the environment.54, 

19 55 Receptors convert physical and chemical stimuli into electrical 
20 signals. This process enables humans to appropriately respond to 
21 stimuli. Receptors have evolved to be specifically responsive to 
22 stimuli and can be classified into categories based on their ability to 
23 accommodate different external stimuli, such as mechanoreceptors, 
24 thermoreceptors, photoreceptors, chemoreceptors, and 
25 nociceptors. 

26 Receptors operate based on thresholds and relaxation.56 The 
27 threshold indicates the minimum intensity of a stimulus required to 
28 be activated, below which the receptor remains unresponsive. This 
29 characteristic enables the receptors to filter out insignificant minor 
30 stimuli and focus on more critical signals. Upon activation by external 
31 stimuli, receptors transition into a relaxed state where their 
32 responsiveness to the stimulus gradually diminishes, enabling them 
33 to revert to their initial state. During the relaxation state, receptors 
34 retain a certain degree of activation; consequently, the threshold 
35 intensity of the stimulus for reactivation is reduced compared with 
36 that of the initial activation. This phenomenon, known as 
37 sensitization, is crucial for modulating receptor sensitivity.57 
38 Additionally, some receptors exhibit adaptation characteristics, 
39 whereby their response diminishes in the presence of continuous 
40 stimuli. These receptors provide essential protection against 
41 persistent and harmful stimuli while also preventing energy 
42 expenditure on non-essential stimuli.

43 The volatile memristor is suitable as an artificial nociceptor because 
44 it reacts only to electric pulses above a certain threshold and 
45 gradually reduces the output signal once the pulse is removed.58-60 
46 Moreover, such threshold and relaxation behaviors strongly depend 
47 on the strength, period, and duration of the input signal. Regulating 
48 relaxation enables the mimicry of phenomena observed in certain 
49 receptors, such as allodynia, in which the threshold is lowered upon 

50 exposure to harmful stimuli, and hyperalgesia, in which the response 
51 is amplified. In addition, this approach enables the implementation 
52 of adaptation functionality, which allows the receptors to adjust to 
53 repeated stimuli. The detailed mechanisms and applications are 
54 discussed in Section 3.

55 2.2 Neuron

56 Neurons constitute the fundamental units of the nervous system that 
57 transmit electrical signals generated by external stimuli at receptors 
58 in the brain, enabling recognition and response to these stimuli.61, 62 
59 Neurons are primarily composed of the cell body (soma), dendrites, 
60 and axons. The soma acts as the metabolic and genetic center of the 
61 neuron, housing the cell nucleus and supporting vital cellular 
62 functions. Dendrites extending from the soma receive signals from 
63 other neurons or sensory receptors, whereas axons transmit 
64 electrical signals to other neurons and muscles. These electrical 
65 signals are generated from rapid changes in the membrane potential 
66 of the axon, known as the action potential.63 When the action 
67 potential reaches the axon terminal, neurotransmitters are released 
68 into the synapse and subsequently interact with the dendrites of the 
69 postsynaptic neuron. Synaptic transmission facilitates the formation 
70 of complex neural networks that enable information collection, 
71 integration, transmission, and coordination. Neurons are classified 
72 based on their functions and characteristics. For instance, sensory 
73 neurons detect external stimuli, such as light, sound, and 
74 temperature, and transmit this information to the central nervous 
75 system. Motor neurons carry commands from the central nervous 
76 system to the muscles or glands. Interneurons function as 
77 intermediaries, processing and relaying information between 
78 sensory and motor neurons.

79 Volatile memristors are well-suited as artificial neurons due to their 
80 ability to exhibit a steep current response exceeding a threshold 
81 stimulus, followed by a decrease through volatile switching—closely 
82 mimicking action potentials. Additionally, they effectively integrate 
83 inputs from multiple channels and generate repetitive spike signals 
84 with frequencies proportional to the combined input levels.  During 
85 signal generation, volatile memristors dynamically adjust their 
86 responses based on input strength and frequency, efficiently 
87 encoding continuous analog signals into spike trains—similar to 
88 biological neurons. This adaptability enables differentiation between 
89 weak and strong stimuli, replicating sensory adaptation mechanisms 
90 in the human nervous system. Recent studies have demonstrated the 
91 implementation of Hodgkin–Huxley (HH) and leaky integrate-and-
92 fire (LIF) model neurons using volatile memristors, further 
93 highlighting their compatibility with biological neuron models. These 
94 models leverage the ability of memristors to replicate essential 
95 neuronal behaviors such as voltage-dependent conductance and 
96 firing dynamics. Specifically, artificial neurons using volatile 
97 memristors encode temporal information by adjusting their spiking 
98 frequency based on the input intensity, closely resembling the time-
99 dependent stimulus information of biological sensory neurons. 

100 Moreover, memristor-based implementations offer advantages such 
101 as low power consumption and scalability while achieving 
102 comparable performance to biological neurons.
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1 2.3 Synapse

2 Synapses serve as junctions between the axon of one neuron and the 
3 dendrite of another, playing an essential role in neural 
4 transmission.52, 64 When an electrical signal reaches the axon of a 
5 presynaptic neuron, the synapse adjusts the connection strength 
6 (synaptic weight) based on the input signal, either strengthening or 
7 weakening the synaptic weight. The dynamic regulation of synaptic 
8 weight is fundamental to learning and memory and serves as a 
9 critical component in understanding the functional mechanisms of 

10 the human brain. Adjustments in synaptic weight, such as spike-
11 timing-dependent plasticity (STDP), short-term plasticity (STP), and 
12 long-term plasticity (LTP), are fundamental to the ability of the brain 
13 to adapt, learn, and form memories.65-67 STDP is used to effectively 
14 control synaptic weight, demonstrating a type of synaptic plasticity 
15 that depends on the exact timing between the two neurons. This 
16 mechanism facilitates the efficient utilization of neural networks by 
17 leveraging the temporal interactions between neurons. STP refers to 
18 temporary changes in synaptic strength. The STP lasts from a few 
19 seconds to several minutes and can fluctuate based on the activity 
20 patterns of the neurons. It is primarily governed by intracellular 
21 mechanisms associated with neurotransmitter release and plays a 
22 crucial role in adapting to rapidly changing environments and 
23 processing transient information. Unlike STP, LTP is required for long-
24 term memory formation. LTP refers to the sustained enhancement 
25 of synaptic strength over extended periods, ranging from hours to 
26 years. It is known to play a critical role in learning and memory 
27 processes and arises from the repeated activation of specific neural 
28 paths.

29 Non-volatile memristors are highly suitable for mimicking synaptic 
30 characteristics.59, 68, 69 Non-volatile memristors exhibit resistance 
31 changes in response to electrical stimuli, effectively replicating the 
32 synaptic weight. Furthermore, the switching behavior of non-volatile 
33 memristors, which allows them to retain information even in the 
34 absence of a bias, enables the emulation of long-term memory 
35 functionality. The modulation of resistance and synaptic weight 
36 assumes a critical function for assessing the intensity of previous 
37 input signals within the frameworks of machine learning and neural 
38 network algorithms. The linearity of resistance modulation is crucial 
39 and can be effectively utilized to deduce the strength of the signals. 
40 Linearity is essential for improving the precision of the numerous 
41 algorithms used in machine learning and neural networks. 
42 Furthermore, the potential of utilizing non-volatile memristors to 
43 emulate the characteristics of synaptic devices has been 
44 demonstrated, enabling the replication of various forms of synaptic 
45 plasticity such as LTP, STP, and STDP. In detail, non-volatile 
46 memristors can exhibit STDP behavior, where synaptic strength is 
47 modified based on the timing of pre- and post-synaptic input spikes. 
48 In addition, LTP and STP can be achieved by adjusting the device 
49 conductance in response to varying input frequencies, allowing non-
50 volatile memristors to adapt to both transient and sustained input 
51 patterns. This is achieved through the precise control of the 
52 formation of conductive pathways, which are closely associated with 
53 resistance changes in non-volatile memristors. This approach can 
54 effectively reproduce the dynamic properties of synaptic plasticity. 

55 These findings demonstrate the ability to implement various forms 
56 of synaptic plasticity and memory functions, highlighting their 
57 potential suitability for efficient brain-inspired computing 
58 architectures.

59 3. Memristor-based tactile sensory system

60 Human skin enables us to recognize objects and interpret the 
61 environment through the sense of touch. Tactile perception is 
62 complex and involves sensing, refining, learning, and forming 
63 interactions with the external environment.70-73 Receptors on 
64 sensory neurons embedded in the skin, such as nociceptors, 
65 chemoreceptors, and mechanoreceptors, detect various somatic 
66 sensations and convey tactile information to the brain via electrical 
67 signals. This process enables exquisite sensations of object 
68 recognition, texture discrimination, and sensory feedback. Tactile 
69 receptors can detect even small amounts of pressure or force, and 
70 when combined with external stimuli, they provide a detailed and 
71 nuanced picture of the object or surface being touched. This 
72 information can help humans navigate their environment, 
73 manipulate objects, and perform tasks that require a sense of touch. 
74 They can also improve the functionality and comfort of prosthetic 
75 limbs by providing users with a more natural and intuitive sense of 
76 touch. This chapter explains memristor-based electronic tactile 
77 sensory systems related to somatic sensations.

78 3.1 Memristor-based nociceptor and adaptive receptor 

79 Nociceptors play a vital role in mimicking human acceptance and 
80 processing of external stimuli. When a stimulus such as mechanical 
81 stress, chemical stress, or temperature is applied, the nociceptor 
82 determines the degree of hazard and generates the corresponding 
83 biochemical signals. Therefore, to assess the danger posed by 
84 external stimuli and to respond to and safeguard oneself, all diverse 
85 features must be incorporated into the nociceptor.74, 75

86 Memristor-based nociceptors are similar to bionociceptors in that 
87 they respond differently to different stimuli. As shown in Fig. 3a, 
88 Yoon et al. established an artificial nociceptor based on an Ag-based 
89 threshold-switching memristor with the function of a nociceptor that 
90 implements four key functions (threshold, relaxation, no adaptation, 
91 and sensitization).76 Allodynia and hyperalgesia, resulting from 
92 harmful or abnormal stimuli, can be effectively induced in 
93 memristors by applying high voltages that exceed the threshold level. 
94 When the input voltage is increased to a level perceived as harmful, 
95 the conductive paths in the memristor grow excessively, making 
96 spontaneous and complete rupture challenging after the voltage is 
97 removed. Consequently, residual Ag clusters or conductive paths 
98 remain within the oxide film, facilitating a rapid response to stimuli 
99 below the threshold (sensitization). To further demonstrate the 

100 potential of the nociceptor, an artificial Ag-based nociceptor 
101 memristor was integrated into the thermoelectric module. The 
102 thermal nociceptor only generated an electric spike at a critical 
103 temperature (50 °C, hazardous temperature). As the temperature 
104 increased, the signal amplitude increased, and the onset time 
105 decreased. 
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1 Kim et al.77 reported an artificial nociceptor based on a Pt/HfO2/TiN 
2 memristor utilizing trap/detrap mechanisms instead of a cation-
3 based threshold-switching memristor. The nociceptive function was 
4 imitated by adjusting the trap depth of the HfO2 layer. When a 
5 sufficiently high positive voltage was applied to Pt, lowering the trap 
6 level below the Fermi energy level of TiN facilitated electron injection 
7 from TiN to fill the trap sites. Once filled, the electron transport 
8 increased sharply due to trap-assisted tunneling conduction 
9 between trap sites, turning the device on (threshold switching). After 

10 the voltage was removed, the difference in work functions between 
11 the Pt and TiN electrodes created a built-in potential that caused the 
12 trapped electrons to relax over time (relaxation). The device 
13 exhibited a wide operation time span ranging from milliseconds to 
14 ten seconds, with a relaxation time scale well-matched to typical 
15 biological systems making it highly effective for mimicking nociceptor 
16 behavior. Therefore, additional circuits have been designed to 
17 effectively mimic biological reflex actions, enabling immediate 
18 response generation and transmission to the spinal cord when 
19 exposed to danger.

20 There is an increasing need for humanoid robots to imitate advanced 
21 biological functions to respond efficiently to external environments. 
22 Biological skin can protect itself against harmful damage by detecting 
23 the degree of danger and initiating appropriate actions using 
24 nociceptors. Moreover, biological skin can self-heal and eventually 
25 return to its normal state when damaged by external stimuli. The 
26 design of a memristor is crucial for mimicking the complex 
27 characteristics of bioskin. Xiaojie et al. reported an artificial sensory 
28 system with the ability to sense and warn patients of pain and heal 
29 itself. The FK-800-based organic volatile memristor acted as an 
30 electronic skin (Fig. 3b).78 Self-healing was achieved because of the 
31 intrinsic characteristics of the organic material, similar to human 
32 skin. In addition, to sense pain and signs of injury, the artificial tactile 
33 system was composed of a triboelectric generator, volatile 
34 memristor, and light-emitting diode (LED). The triboelectric 
35 generator and volatile switching memristor act as mechanoreceptors 
36 and nociceptors, respectively. The triboelectric generator generates 
37 an output voltage based on the intensity of the external stimulus, 
38 and the generated voltage is applied to a volatile memristor. When a 
39 voltage above the threshold value was applied to the volatile 
40 memristor, the memristor and LED turned on. This case was 
41 considered to have minimal damage or pain and was not considered 
42 a threat. When a voltage below the threshold value was applied, the 
43 memristor and LED did not turn on, causing no damage or pain. 
44 Conversely, when a large input voltage was applied to the memristor 
45 as a strong stimulus, the relaxation time and resistance of the volatile 
46 memristor were longer and lower, respectively. Therefore, the LED 
47 was stronger and required a longer time to turn off completely.

48 To effectively perceive the external environment, it is essential to 
49 recognize both harmful and incoming nonharmful stimuli. 
50 Nociceptors react to potentially harmful stimuli such as pressure, 
51 heat, or chemicals, transmitting signals to the brain, where they are 
52 interpreted as pain. They respond consistently to specific types of 
53 stimuli (no adaptation). In contrast, adaptive receptors reduce their 
54 sensitivity when exposed to continuous stimulation (adaptation), 

55 facilitating the filtration of unimportant and repetitive information.79, 

56 80 This mechanism is essential for sensory processes such as vision, 
57 hearing, and touch, allowing humans to adjust to dynamic 
58 surroundings. 

59 However, its implementation is difficult for both the existing CMOS-
60 based and memristor-based receptors. Song et al. proposed an 
61 artificial receptor that mimicked both the adaptive and maladaptive 
62 characteristics using an Ag-based volatile memristor.81 The artificial 
63 receptor was implemented by adjusting the thickness of the 
64 conductive filament with varying amounts of metal ions. The 
65 competitive relationship between Joule heating and 
66 electromigration was controlled by the number of metal ions, which 
67 determined the thickness of the conductive filament. Fig. 3c shows 
68 that the thin conductive filament (low Ag concentration) ruptured 
69 due to Joule heating during high-intensity stimuli (adaptive 
70 receptor), whereas the thick filament (high Ag concentration) 
71 maintained an electrical on-state (maladaptive receptor). Thus, the 
72 authors demonstrated the feasibility of implementing normal 
73 sensory-receptor behaviors.

74 3.2 Tactile stimulus perception

75 Artificial electronic skin, which captures surrounding tactile stimuli, 
76 is deployed in advanced intelligent systems. Conventionally, artificial 
77 electronic skin requires additional external equipment to store and 
78 process large amounts of data. However, this structure is inefficient 
79 in terms of energy consumption and processing speed because it 
80 causes time delays and large energy consumption. Memristor-based 
81 tactile sensory systems can effectively emulate the functions of 
82 human tactile nerves in low-power operations without requiring 
83 additional equipment. Memristor-based tactile sensory systems 
84 enable the recording of stimuli by translating external mechanical 
85 stimuli into modulated electrical spikes. To mimic a tactile sensory 
86 system, an artificial system generally comprises a bio-inspired 
87 synaptic or neuron memristor and various sensors for detecting the 
88 external environment. The sensor connected to the memristor 
89 detected the strength of the external stimulus and generated various 
90 electrical signals based on the degree of stimulation applied. The 
91 memristor integrates the output signals of the parallel sensor and 
92 processes them into unified electrical spikes.82-84 

93 Wang et al.85 demonstrated an ultrafast artificial skin system based 
94 on near-sensor analog computing architecture. The artificial skin was 
95 implemented by combining a memristor with a tactile sensor and 
96 was fabricated on a flexible substrate. When a tactile sensor 
97 recognizes an external stimulus, an input pulse is generated and 
98 applied to the memristor to alter its resistance. Accordingly, the 
99 system simultaneously captures and processes the tactile stimuli in 

100 real time. In addition, the authors suggested that the system could 
101 be mounted on a finger or prosthesis to detect the edge information 
102 of external objects in real-time (Fig. 4a). 

103 Sensory systems can simultaneously receive and transmit various 
104 types of information from the environment via various receptors. 
105 Similar to human reliance on multiple stimuli for decision-making 
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1 and responses, artificial nervous systems that utilize memristors 
2 require the integration of information from diverse external stimuli 
3 to achieve effective functionality. Artificial sensory systems aim to 
4 achieve multisensory functions by simultaneously integrating and 
5 processing various sensory input signals. The first approach involves 
6 integrating the input signals obtained from a circuit comprising 
7 multiple sensors and a memristor. Xinqiang et al.86 developed a 
8 multimodal sensory system that utilized pressure and temperature 
9 sensors in conjunction with non-volatile memristors and employed a 

10 signal coupling method to integrate the outputs (Fig. 4b). The input 
11 stimulus can be integrated from different sensors, and an output 
12 signal can be generated once the input signal from each sensor 
13 reaches a fixed threshold voltage. Six pressed and two hot stimuli 
14 were applied to the system, which recognized eight stimuli and 
15 generated an eight-fold output. Correspondingly, the memristor 
16 reacted to several toxic stimuli and modulated conductance. This 
17 study demonstrates that a multimodal artificial sensory system can 
18 be constructed using different sensors (pressure and temperature) 
19 and signal-coupling modules.

20 A multimodal sensory system can be realized using memristor 
21 materials. This approach simplifies the circuits that constitute the 
22 multimodal sensing, making it efficient and advantageous in terms of 
23 energy utilization. Qingxi et al. developed a multisensory system by 
24 configuring an oscillation circuit using piezoresistive sensors and a 
25 VO2-based volatile memristor (Fig. 4c).87 VO2 exhibits inherent 
26 thermal sensitivity, which enables its resistance state and 
27 characteristics to change in response to temperature fluctuations. 
28 Consequently, the VO2-based memristor enables the monitoring of 
29 temperature stimuli without the need for supplementary sensors. 
30 When direct thermal stimuli are applied to a memristor, the inherent 
31 thermal sensitivity characteristics of VO2 alter the switching behavior, 
32 thereby inducing a change in the oscillation circuit characteristics. In 
33 addition, when haptic actions are applied to a piezoresistive sensor, 
34 the magnitude of the stimulus alters the output of the sensor, which 
35 in turn changes the voltage applied to the non-volatile memristor, 
36 consequently modifying the oscillation characteristics of the volatile 
37 memristor. Therefore, without multiple sensors or electrical modules, 
38 an artificial mechanical sensory system can effectively synchronize 
39 information regarding external stimuli through vibrations that vary 
40 in response to pressure and temperature.

41 Memristor-based tactile receptors effectively detect various external 
42 stimuli, including heat and pressure. These receptors mimic the 
43 ability to recognize external stimulus patterns and generate 
44 appropriate responses through sensor integration and 
45 computational analyses. However, sensor integration remains 
46 energy inefficient, and research on their ability to process multiple 
47 stimuli simultaneously remains limited. Further investigation is 
48 needed on software-based approaches for classifying and analyzing 
49 simultaneous stimuli, such as applying algorithms similar to the 
50 single-coupling module shown in Figure 4b. These additional 
51 approaches can enhance the accuracy of human tactile system 
52 emulation.

53 4. Memristor-based visual sensory system 

54 Human vision is the primary method used to assess the size, shape, 
55 color, brightness, distance, and surface roughness of an object. 
56 Humans acquire more than 80% of their external information 
57 through the visual sensory system. In the information acquisition 
58 process, the eyes, brain, and muscles collaborate to perceive light 
59 stimuli and protect oneself by responding to potentially harmful 
60 stimuli.88-90 The human visual sensory system rapidly processes these 
61 complicated tasks in a highly accurate and energy-efficient manner. 
62 Thus, mimicking this system is desirable for the efficient detection, 
63 processing, and storage of large volumes of visual information. 
64 However, the biological visual system features a complex hierarchical 
65 organization, including neural structures, such as the retina, bipolar 
66 cells, horizontal cells, and ganglion cells. Consequently, mimicking 
67 this system by using electronic circuits requires highly complex 
68 circuits and substantial energy consumption for information 
69 processing. Therefore, the development of more compact and 
70 efficient artificial visual sensory systems that can integrate sensing, 
71 processing, and storage functions is required. In Section 3, we 
72 describe a method that mimics human visual characteristics, such as 
73 light and motion detection, and the perception of an object using a 
74 memristor. This approach employs a memristor to mimic the visual 
75 adaptation functions, enhance efficiency, and reduce the complexity 
76 of an artificial visual system.

77 4.1 Retina-like preprocessing 

78 The retina contains photoreceptors that detect external stimuli and 
79 transmit visual data to bipolar cells, which serve as intermediaries 
80 between the photoreceptors and ganglion cells. The data are then 
81 relayed through synapses with ganglion cells, triggering action 
82 potentials that travel to the lateral geniculate nucleus (LGN). The LGN 
83 transmits these signals to the visual cortex. In this process flow, a 
84 memristor can process information related to light intensity, directly 
85 detect the light intensity, or appropriately adapt to changes in the 
86 ambient light levels of the external environment.91, 92 

87 Dang et al.93 demonstrated that the one-phototransistor–one-
88 memristor (1PT1R) synaptic device shown in Fig. 5a has the potential 
89 for in-sensor computing and edge computing in visual sensory 
90 systems. In the 1PT1R structure, the ZnO-based phototransistor 
91 provides a driving current proportional to the light illumination, 
92 enabling the implementation of a high-linearity light-tunable 
93 multilevel conductance state within the Mo/SiO₂/W memristor. 
94 Moreover, an optical artificial neural network (OANN) composed of 
95 a 16 × 3 1PT1R array performs cross-talk-free conductance updates 
96 because the phototransistor functions as a selector. The proposed 
97 OANN achieved a 99.3% accuracy in image recognition, 
98 demonstrating that the 1PT1R device is a promising hardware 
99 solution for artificial visual systems.

100 Shan et al.94 demonstrated fully light-modulated synaptic plasticity 
101 using a plasmonic optoelectronic memristor comprising Ag 
102 nanoparticles embedded in a TiO2 nanoporous film. Fig. 5b illustrates 
103 the photooxidation and reduction processes of the Ag nanoparticles 
104 embedded in the device under UV/Vis irradiation. Under visible light 
105 irradiation, electrons from Ag transferred to the conduction band of 
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1 the TiO₂ film, generating Ag⁺ ions. This increased the effective 
2 diameter of the Ag conducting filament, thereby enhancing device 
3 conductivity. In contrast, UV irradiation excited electrons in the 
4 valence band of the TiO₂ film to its conduction band, which reduced 
5 the number of Ag+ ions and suppressed the increase in device 
6 conductivity. Consequently, when electrical pulses were applied 
7 after UV and visible-light irradiation, the current response was 
8 greatly improved only under visible-light irradiation. This enables the 
9 emulation of light-induced and gated synaptic plasticity. The STDP 

10 learning was conducted using UV/Vis light. The memristor effectively 
11 eliminates image noise owing to its specific UV light-induced long-
12 term depression (LTD) function. In addition, light-induced STDP 
13 learning has been identified as a feature of high-level image 
14 processing. By incorporating low-level image preprocessing steps, 
15 such as contrast enhancement and noise reduction, the learning rate 
16 and efficiency of high-level image recognition processes can be 
17 significantly improved by these memristors, as demonstrated 
18 through simulations.

19 Xu et al.95 reported the HH neuron-based artificial visual sensory 
20 system shown in Fig. 5c using a volatile VO2 memristor. The volatile 
21 VO2 memristor modulates the threshold and hold voltages based on 
22 temperature, which mimics a biological neuron. The proposed 
23 volatile memristor exhibits frequency relaxation in tonic spiking (a 
24 type of neuron spiking model) under varying pulse inputs, and a 
25 transition between spiking models when the input pulse changes 
26 abruptly. This is analogous to the light-adaptive functions of 
27 photoreceptors (cone and rod cells) in the retina. Primary 
28 photoreceptors responsible for light processing change during the 
29 transition between bright and dark environments. This shift, referred 
30 to as photopic and scotopic adaptation, has been successfully 
31 realized in a circuit comprising an HH neuron, a thermoelectric 
32 ceramic, and a light-dependent resistor. These components convert 
33 light into thermal stimuli that are subsequently used to generate 
34 input pulses that induce frequency changes during spiking. This light-
35 adaptable function is useful for artificial applications. The authors 
36 demonstrated the potential of integrating spiking neural network 
37 (SNN) algorithms into machine vision applications to simplify circuits 
38 and complex processing.

39 4.2 Self-protection via detecting the intensity of light

40 In addition to light detection, the visual system should also be 
41 capable of analyzing the diverse spatiotemporal patterns of 
42 photoreceptors activated in the retina. This involves protective 
43 behaviors such as closing the eyes to shield against damage from 
44 intense light and impending collisions, and nociceptive functions to 
45 detect harmful light stimuli.

46 A highly efficient artificial visual sensory system comprising an 
47 optoelectronic threshold-switching memristor and an actuator was 
48 proposed by Pei et al.96 The Sb2Se3/CdS-core/shell nanorod array-
49 based (SC) optoelectronic memristor enhanced light-harvesting 
50 activities, received optical signals, and converted them to a voltage 
51 before transmitting them to the threshold-switching memristor-
52 based neuron circuit. The SC memristor exhibited resistive switching 

53 characteristics in a light-irradiated environment, as shown in Fig. 6a, 
54 driven by conductive dangling bonds and vacancy defects on the 
55 surface of the Sb2Se3 nanorods. This results in an increased ON/OFF 
56 resistance ratio, which in turn increases the firing frequency of 
57 neuronal circuits proportional to the light intensity. When the light 
58 exceeded the safety range, the firing frequency and amplitude of the 
59 SC memristor and neuron circuit increased significantly, potentially 
60 triggering an electric actuator. This emulates eye muscle contraction 
61 and reproduces the self-protective behavior of closing eyes in 
62 response to intense light damage.

63 Wang et al.97 developed an artificial visual sensory system motivated 
64 by locusts, which, compared to humans, have a superior perception 
65 of moving objects. The vision system of locusts includes a lobular 
66 giant movement detector (LGMD) that generates danger signals 
67 before the occurrence of collisions. This functionality is 
68 demonstrated in Fig. 6b using an Ag conductive filament-based 
69 threshold-switching memristor. The formation and rupture of Ag 
70 conductive filaments in the volatile memristor were used to 
71 implement the excitatory and inhibitory effects on LGMD neurons. 
72 The conductivity of the volatile memristor increased and then 
73 decreased as the intensity of light increased. When the light power 
74 applied to the device was gradually increased to correspond to the 
75 approaching objects, the current response initially increased, 
76 reached a peak, and then decreased as the collision point 
77 approached. In detail, at low light intensities, moderate Joule heating 
78 accelerates the drift of Ag⁺ ions and the formation of conductive 
79 filaments, while at high light intensities, significant Joule heating 
80 induces the rupture of Ag conductive filaments. Consequently, the 
81 LGMD neuron implemented in this configuration provides 
82 information prior to the collision point, enabling self-protective 
83 behavior.

84 Li et al.98 demonstrated a visual nociceptor based on a two-terminal 
85 optical synaptic device with a monolayer MoS2 depicted in Fig. 6c. 
86 The optical synaptic device successfully emulated adjustable synaptic 
87 behaviors, including STP, LTP, and paired-pulse facilitation (PPF), by 
88 leveraging the persistent photoconductivity resulting from charge 
89 trapping. Notably, when the device was stimulated with light 
90 intensities ranging from 2.5 to 7.5 nW/μm², the photocurrent 
91 reached a higher level of saturation, which aligned with the no-
92 adaptation characteristic of nociceptors. Furthermore, when paired 
93 320 nm light pulses were applied to the optical synaptic device at 
94 intervals of 1, 2, and 3 s, a stronger photocurrent was observed at 
95 shorter intervals, demonstrating the dependence of the device on 
96 the relaxation time. Additionally, ultraviolet pulses with a 
97 wavelength of 320 nm and power densities of 25 and 75 nW/μm² 
98 were used to induce low-injured and strong-injured states, 
99 respectively. In these injured states, the device exhibited a 

100 heightened sensitivity to light pulses. In the low-injured state, even a 
101 low-intensity ultraviolet pulse (1.5 nW/μm², 1 s) exceeded the 
102 activation threshold, while in the strong-injured state, an intensity of 
103 1.2 nW/μm², which is below the threshold, produced a significant 
104 photocurrent. This behavior mirrors the nociceptor characteristics of 
105 "allodynia" and "hyperalgesia," where sub-threshold stimuli can 
106 elicit a response in an injured state.
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1 To implement artificial visual sensory systems, memristors have been 
2 integrated with separate photodetection devices or fabricated using 
3 photoresponsive materials. While integration with separate devices 
4 ensures reliable processing of external stimuli, photoresponsive 
5 memristors offer superior integration density. However, 
6 incorporating photodetection capabilities into memristors often 
7 requires additional fabrication steps, such as coating nanorod arrays 
8 with photoactive materials or using ultrathin channel materials like 
9 nanosheets, which increases complexity. Therefore, further research 

10 is required to develop simplified fabrication techniques for 
11 photoresponsive memristors.

12 5. Memristor-based auditorial sensory system 

13 The biological auditory system detects and collects information from 
14 pressure waves of different amplitudes, frequencies, and 
15 components in the medium generated by motion or collision.99-101 
16 Sound waves that arrive at the ear are mechanically transmitted to 
17 sensory hair cells in the cochlea, generating amplified electrical 
18 signals owing to mechanical vibrations. Information in the form of 
19 amplified electrical signals is transmitted from the auditory sensory 
20 nerves to the cerebral cortex. Through this process, humans 
21 recognize sounds in their surroundings. The input sound is encoded 
22 as a train of electrical pulses created from the output of a frequency-
23 selective channel in the cochlea (space-to-rate encoding). Sparse 
24 sampling of the frequency information was performed according to 
25 the active frequency channel without capturing all information from 
26 the sound source at the maximum sampling rate. Using this coding 
27 strategy, the cerebral cortex efficiently extracts key information from 
28 complex sound signals, enabling the biological auditory system to 
29 produce higher-level perceptions including sound location, rhythm 
30 perception, pitch recognition, and sound recognition. The ear 
31 receives a combination of simultaneous sound sources with various 
32 frequency components. This complexity is further exacerbated 
33 because both the frequency and amplitude of these components can 
34 be converted into a single sound. Owing to the spatiotemporally 
35 encoded nature and time dependency of sound waves, signal 
36 processing in the auditory system is more complicated than that in 
37 the visual or tactile systems. Chapter 4 introduces the pioneering 
38 demonstration of an integrated memristor-based artificial auditory 
39 system divided into sound location (azimuth detection) and sound 
40 recognition.

41 5.1. Sound location

42 To determine the location and direction of a sound source, the 
43 human brain relies on interaural time difference (ITD), which is the 
44 difference in the time of sound arrival between the two ears. The 
45 sound signal is generally divided into a left and right signal to be 
46 processed, and the important clue for sound location is the ITD in the 
47 range of –0.6 ms to 0.6 ms. Based on ITD theory, several successful 
48 demonstrations of sound localization have been conducted using 
49 memristors.

50 To emulate sound localization based on the ITD, Sun et al.102 
51 demonstrated precise temporal computation for the identification of 

52 acoustic sound locations using the intrinsic synaptic capability of 
53 short-term synapses. Based on the Joule heating and versatile 
54 doping-induced metal-insulator transitions in a scalable monolayer 
55 MoS2 device, synaptic computation was conducted to process a given 
56 acoustic signal, as shown in Fig. 7a. The memristor device was 
57 designed with a biologically comparable energy consumption (10 fJ), 
58 and tunable STP was demonstrated by the flexible doping level of 
59 MoS2. A circuit with this tunable synaptic device achieved ITD 
60 detection, emulating precise temporal computations in the human 
61 brain by suppressing the sound intensity- or frequency-dependent 
62 synaptic connectivity.

63 The integration of piezoelectric micromachined ultrasound 
64 transducer (pMUT) sensors into a neuromorphic RRAM-based 
65 computational map has been reported to demonstrate real-world 
66 sensory processing in object localization.103 As shown in Fig. 7b, an 
67 event-driven auditory processing system applied to object 
68 localization was developed using an in-memory computing 
69 architecture. Inspired by the neuroanatomy of the barn owl, which is 
70 known to be an efficient auditory localization system with hunting 
71 capabilities during the night, the time-of-flight (ToF) of the sound 
72 wave was encoded, and the difference between the two ToF 
73 measurements (ITD) was analyzed to identify the sound location. The 
74 energy efficiency of object localization was realized by exploiting 
75 event-driven RRAM-based neuromorphic circuits that processed the 
76 signal information produced by the embedded sensors to calculate 
77 the position of the target object in real time. Unlike conventional 
78 sensory systems that continuously sample and calculate the detected 
79 signal to extract useful information, this energy-efficient auditory 
80 system performs asynchronous computations as useful information 
81 arrives.

82 Moreover, with the integrated 1 K HfOx-based analog memristor 
83 array and a multithreshold update scheme, the in situ learning ability 
84 of the sound location function was demonstrated.104 As shown in Fig. 
85 7c, a brain-like learning algorithm and architecture for the sound 
86 location function were successfully realized, demonstrating the 
87 capability of processing sound signals from two artificial ears. With 
88 high accuracy (45.7%) and energy efficiency (184×) compared to 
89 existing methods, it demonstrated a significant advancement toward 
90 realizing advanced auditory localization systems.

91 5.2. Speech recognition

92 Speech recognition, a key requirement for artificial intelligence 
93 machines to communicate with humans, has been widely developed 
94 in software-based neural networks. However, the long latency and 
95 large storage requirements for large amounts of voice data in speech 
96 recognition tasks in the existing von Neumann architecture pose 
97 limitations. Therefore, energy-efficient neuromorphic computing 
98 systems have a significant potential for processing audio signals. In 
99 this subsection, several memristive-based artificial auditory systems 

100 with highly accurate and efficient speech recognition performances 
101 are presented. 
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1 A TiN/HfOx/TaOx/TiN memristor device that features a multilevel 
2 analog resistive state was developed.105 The artificial cochlea-based 
3 circuit was used to experimentally demonstrate the filtering 
4 behaviors of five channels with different central frequencies. 
5 Consequently, when connected to a convolutional neural network, 
6 as shown in Fig. 8a, it achieved the extraction of speech features, 
7 demonstrating the feasibility of a highly efficient artificial cochlear 
8 system.

9 An artificial van der Waals hybrid synapse was developed and 
10 demonstrated using acoustic pattern recognition. Its superior 
11 conductance controllability was achieved using WSe2 and MoS2 
12 hybrid channels, which are specialized for linear and symmetric 
13 conductance change characteristics.106 The hybrid synaptic device 
14 was used to perform acoustic pattern recognition (from recording, 
15 transforming, and integrating) with high accuracy (93.8%), as shown 
16 in Fig. 8b, indicating its potential for brain-inspired computing.

17 Speech recognition using a memristor array (W/MgO/SiO2/Mo) with 
18 multilevel conductance has also been demonstrated (Fig. 8c).107 
19 Speech recognition in a memristive SNN was achieved by precisely 
20 tuning the weights of the artificial synapses. For effective and sparse 
21 spatiotemporal feature extraction, a one-dimensional elf-organizing 
22 map (SOM) network was used, which essentially operated to achieve 
23 high performance and simplify the SNN classifier. Compared to other 
24 ANN-based systems, the advantages of a simplified structure and 
25 high energy efficiency have been demonstrated in memristive SNNs 
26 for speech recognition tasks.

27 Memristors have demonstrated excellent performance in converting 
28 acoustic signals into electrical signals for artificial auditory sensory 
29 systems. However, a significant portion of the processing, such as 
30 post-processing and learning of the converted signals, still relies 
31 heavily on software-based computations and simulations. 
32 Additionally, there is potential for applications that can reduce 
33 sensitivity or block sounds in response to sudden loud noises, but 
34 further research is needed to explore and develop these possibilities.

35 6. Memristor-based olfactory sensory system

36 The integration and coordination of the olfactory receptors, cortex, 
37 and muscles enables humans to recognize and memorize odor 
38 stimuli and respond to specialized gases. In the biological olfactory 
39 sensory system, odorants from the environment are detected by 
40 olfactory receptors, which trigger electrical signals as the output. 
41 Spike signals are generated by the olfactory sensory neurons and 
42 transmitted through the olfactory bulb, where signal preprocessing 
43 is performed. Finally, the preprocessed signals are transmitted to 
44 higher regions of the brain (olfactory cortex) to identify and 
45 memorize odors.108-112 Among the various perceptions, olfaction is 
46 particularly complex and vague because of the complexity of the 
47 chemosensory system, which must distinguish and quantify gas 
48 molecules in constantly changing environments. Therefore, these 
49 olfactory processes can provide information on complex smells, 
50 which in turn can provide key guidance for awareness, decision-
51 making, and action in the surrounding environment. 

52 Despite the importance of the olfactory system, relatively few 
53 studies have been conducted because of its complexity. It remains a 
54 challenge to completely emulate the functions of the human 
55 olfactory system in recognizing, memorizing, and inducing muscle 
56 movements in response to dangerous gases. Section 6 introduces 
57 various artificial olfactory systems based on the functions of the 
58 human olfactory system, including odor recognition, memorization, 
59 and protection in dangerous and gaseous environments.

60 6.1. Odor recognition and memorization

61 The olfactory system, comprising thousands of different types of 
62 receptors and classifiers, enables humans to recognize and 
63 memorize odors. Stimulated by odorant molecules, specific spikes 
64 are generated by the olfactory receptors and analyzed using neural 
65 networks. Following learning and training, humans recognize 
66 different odors through memorization using olfactory systems. 
67 Although various strategies have been proposed to construct 
68 artificial olfactory systems, most studies have focused on developing 
69 systems that use gas sensors and complex neural networks. Recently, 
70 a bioinspired memristor-based olfactory system with perceptual 
71 learning and memorization abilities was developed to classify several 
72 different gases. 

73 Qifeng Lu et al. developed a hybrid flexible gas-detection system 
74 utilizing NiO nanowall-based gas sensors, oscillators, and graphene-
75 based memristor-based synapses. In this system, the signals 
76 generated by the gas sensor are converted into pulses by an 
77 oscillator, and the frequency of these pulses varies based on the 
78 resistance of the gas sensor. The stimulation of H2S gas at various 
79 concentrations was converted into pulse signals.113 The altered 
80 pulses became presynaptic signals transmitted to the synaptic 
81 devices, resulting in changes in the resistance (synaptic weight) of 
82 the graphene-oxide-based synapse memristor. Resistance 
83 modulation influences information processing and storage using 
84 synaptic memristors. The system implements learning capabilities 
85 based on the k-nearest neighbor (KNN) algorithm, which efficiently 
86 categorizes unknown gas stimuli into the most probable categories 
87 by comparing them with pre-learned boundaries. The gas-detection 
88 system demonstrated enhanced recognition capabilities through 
89 iterative learning. Initially, the error rate exceeded 45%; however, as 
90 the number of learning iterations increased, the error rate 
91 progressively decreased to approximately 20%. This methodology 
92 enhances the practical application of gas-detection systems and 
93 ensures reliable data analysis.

94 In addition to the mere recognition of a single gas, olfactory systems 
95 have been reported to enable the detection of various gases.114 The 
96 reported system utilizes an array of gas sensors along with neurons 
97 and synapses to form an olfactory sensory system capable of 
98 effectively analyzing complex gaseous environments. An array of gas 
99 sensors capable of detecting four different gases (formaldehyde, 

100 ethanol, acetone, and toluene) at various concentrations was used 
101 to effectively monitor diverse gaseous environments. In a gaseous 
102 environment, the resistance changes in each sensor adjusted the 
103 intensity of the voltage applied to the series-connected neuronal 
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1 memristor (Pt/Ag/TaOx/Pt) (Fig. 9a). These modifications to the input 
2 voltage translate the chemical information of the gases into electrical 
3 spikes in the neuron memristors, thereby providing information on 
4 the gas-detection capabilities of the entire system. The spikes 
5 generated in each neuron are transmitted to a synaptic array 
6 (Pt/Ta/TaOx/Pt), where they undergo learning and training through 
7 spike rate-dependent plasticity (SRDP). This process enables the 
8 storage of gas characteristics in memristor devices. Based on matrix-
9 vector multiplication, the system can effectively classify four 

10 different types of gases. This system enables the precise 
11 identification and quantification of gases with distinct chemical 
12 properties, which is highly beneficial for environmental monitoring. 
13 Furthermore, these memristor-based sensory systems overcome 
14 efficiency problems encountered in existing artificial sensory 
15 systems, such as frequent sampling, data storage, and transfer. Han 
16 et al. reported that sensors with differing sensitivities to the same 
17 gas were serially connected to memristor-based neurons, proposing 
18 an olfactory system capable of clearly recognizing and differentiating 
19 mixed gases.115 In this system, gas exposure alters the resistance of 
20 the gas sensors, modifying neuronal frequency, which can be used 
21 for gas detection. Sensors based on SnO2 and WO3 exhibit different 
22 resistance changes in response to the same gas, leading to distinct 
23 neuronal firing frequencies. This configuration enables the artificial 
24 olfactory system to distinguish unknown gases more accurately. 
25 Furthermore, integration with SNNs has enhanced the ability of the 
26 system to identify various types of reducing gases (NH3, CO, acetone, 
27 NO2). The introduction of additional hidden layers in the SNNs 
28 further improves the recognition of more complex gas mixtures, 
29 highlighting its potential for environmental monitoring and safety 
30 applications.

31 Currently, gas recognition and memory require additional gas 
32 sensors and circuits, which adversely affect the power consumption 
33 and miniaturization of the device. Chun et al. reported a system 
34 capable of recognizing and remembering gases without requiring 
35 additional devices or circuits by employing materials in synaptic 
36 memristors that exhibited both gas-detection capabilities and 
37 resistive change properties, as depicted in Fig. 9b. A synaptic 
38 memristor based on Pt/TiO2 NR/TiN can directly detect gases and 
39 remember them through changes in the resistance state.116 The TiO2 
40 material, the oxide layer of synaptic devices, is not only used for 
41 resistive switching in synaptic memristors but is also employed for 
42 gas detection in conventional gas sensors. When a synaptic 
43 memristor is exposed to H2 gas, the gas reacts with TiO2 to generate 
44 oxygen vacancies, promoting the growth of conductive paths and 
45 decreasing resistance. Conversely, exposure to NO gas removes 
46 oxygen vacancies, causing disruptions in conductive paths and 
47 increasing the resistance. The synaptic device detects changes in 
48 resistance due to gas exposure and stores information regarding the 
49 exposure. This process enables accurate recording of information 
50 related to gas detection and provides reliable environmental 
51 monitoring. This technology plays a crucial role in measuring and 
52 managing gas concentrations in various environments. In addition, 
53 the gas detection capability of a single memristor can be effectively 
54 applied to mixed-gas recognition. Beyond conventional gas-sensor 
55 arrays, a new approach has been reported to leverage the unique gas 
56 selectivity of various materials to construct memristor arrays. This 

57 study utilized SnO2, HfO2, and Ta2O5-based memristors, which exhibit 
58 resistance changes in response to gas interactions. These memristors 
59 demonstrated varying sensitivities to specific gases and 
60 concentrations, enabling the simultaneous detection of mixed gases. 
61 A parallel array significantly improved the accuracy of mixed-gas 
62 concentration predictions, outperforming single-device systems by 
63 over 796% compared to individual Ta2O5-based sensors. This 
64 advancement underscores the potential of memristor-based sensor 
65 technology to enhance environmental monitoring and improve the 
66 accuracy and reliability of gas detection in complex gas 
67 environments.117

68 6.2. Protection in dangerous gas environment

69 The olfactory system plays a crucial role in human awareness, 
70 perception, and action in response to diverse external gaseous 
71 stimuli. The coordination of olfactory receptors and muscles enables 
72 humans to respond to specific gases, which is crucial for protection 
73 in dangerous environments, such as in the case of leakage of toxic 
74 gases or rooms on fire. However, studies on the functions of the 
75 human olfactory system based on memristor devices involving 
76 perception, memorization, and self-protection movements are 
77 lacking. To emulate a complete olfactory system, an artificial 
78 olfactory system should be developed to memorize gas information 
79 and control muscles to ensure self-protection in dangerous 
80 environments. 

81 Recently, bioinspired olfactory systems that enable the perception 
82 and memory of specific gases with the ability to act in the presence 
83 of certain gases have been reported. Gas-sensing visualization using 
84 a smart robot was developed for real-time gas monitoring by 
85 integrating gas sensors and memory devices (Fig. 10a).118 The robot 
86 was equipped with an artificial olfactory memory system developed 
87 to recognize and memorize volatile organic compound (VOCs) gases 
88 at different concentrations. The integration of the sensor and 
89 memory unit facilitated the switching of the synaptic memristor in 
90 response to the VOCs gas and recorded the target gas information 
91 after the gas stimuli disappeared. Additionally, the system was 
92 reconfigured with an LED to enhance the gas detection visualization. 
93 When concentrations of VOCs were detected below the threshold, 
94 the LED remained off. However, if the VOC concentration exceeds 
95 the threshold, the LED immediately brightens and remains on. These 
96 capabilities of the olfactory system present great potential for future 
97 humanoid robots, environmental pollution control, and early 
98 warning of chemical and biohazard safety to alert and respond to 
99 emergencies in dangerous environments.

100 In addition to warning about hazardous gases, the flexible artificial 
101 olfactory system shown in Fig. 10b can recognize, memorize, and 
102 perform self-protection actions for NH3 and was developed by 
103 integrating Sr-ZnO-based gas sensors, HfOx-based memristors, and 
104 electrochemical actuators.119 The gas sensor and synaptic memristor 
105 are connected in series, such that changes in NH3 concentration alter 
106 the resistance of the gas sensor, which modifies the voltage intensity 
107 applied to the synaptic memristor according to the voltage division 
108 rule. Thus, the external chemical signals are conveyed as changes in 
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1 the electrical signals to the memristor through the resistance 
2 variation of the gas sensor. This process plays a crucial role in 
3 translating chemical stimuli into electrical signals. When exposed to 
4 specific concentrations of NH3, the resistance of the gas sensor 
5 decreased sharply; consequently, a voltage (set voltage) sufficient to 
6 switch the synaptic memristor was applied. When the NH3 
7 concentration was low, the memristor remained inactive, causing 
8 the actuator to remain unresponsive and the gas to flow normally. 
9 Conversely, as the NH3 concentration increased, the olfactory 

10 memory device was activated, causing the actuator to bend inward 
11 and close into a conical shape, thereby preventing gas from entering 
12 the nasal cavity. Thus, the activation of the memristor triggers the 
13 movement of the electrochemical actuator to block the gas flow 
14 channel, mimicking the self-protective action of the induced muscle 
15 movement of the hand when it smells NH3. 

16 This section highlights the effective utilization of memristor-based 
17 olfactory systems in humanoid robotics and environmental 
18 monitoring. However, these systems face inherent limitations in 
19 selectivity and sensitivity to various gases. Moreover, there is a need 
20 to develop systems that can detect external gases in real time, 
21 process the data, and execute appropriate responses. This approach 
22 facilitates rapid and accurate reactions to gas leaks and chemical 
23 hazards, significantly improving the efficiency of environmental 
24 monitoring systems.

25 7. Conclusions and Perspectives

26 Memristive artificial sensory systems, inspired by the energy-
27 efficient architecture of biological systems, have been developed to 
28 overcome the technological limitations of conventional CMOS-based 
29 systems. Memristors can emulate the receptors, neurons, and 
30 synapses—the fundamental components of biological sensory 
31 systems. Building on this foundation, memristors enable higher-
32 order functions such as learning, inference, and hazard detection by 
33 mimicking specific biological sensory systems. Table 1 summarizes 
34 how various memristors emulate biological components and 
35 implement sensory characteristics, demonstrating that memristive 
36 artificial sensory systems can effectively replicate the four major 
37 human senses.

38 In this review, we suggested the emulation of receptor, neuron, and 
39 synapse properties using memristors based on an understanding of 
40 their inherent characteristics. Volatile memristors exhibit switching 
41 behavior, transitioning to an ON state when stimuli exceed a specific 
42 threshold and returning to the Off state when stimuli are removed. 
43 This behavior is suitable for simulating receptors and neurons. as it 
44 closely resembles the "threshold" and "relaxation" responses of 
45 biological receptors. In addition, by adjusting stimulus intensity and 
46 duration, volatile memristors can replicate biological phenomena 
47 such as adaptation and sensitization. Moreover, their behavior 
48 closely resembles “the ion channel dynamics” observed in neurons. 
49 When connected to an external circuit, volatile memristors can 
50 effectively model spike generation, including LIF and HH models, as 
51 well as neuron spike shapes. Non-volatile memristors, by contrast, 
52 alter their resistance in response to an applied bias and retain their 

53 resistance even after the bias is removed. This characteristic allows 
54 them to mimic the information storage function of biological 
55 synapses, where resistance modulation corresponds to "synaptic 
56 weight" adjustments in response to neural stimuli.

57 We then discuss the implementation of the four major senses—
58 tactile, visual, auditory, and olfactory—in the memristor-based 
59 artificial sensory system, as illustrated in Fig. 11. Notably, memristors 
60 enable comprehensive coverage of previously unachievable 
61 functionalities that play crucial roles in sensory systems and offer 
62 efficient energy consumption compared to CMOS-based devices and 
63 memristors (Table 2). In artificial tactile systems, advancements in 
64 memristor material and structural design have enabled the effective 
65 emulation of receptor characteristics such as "sensitivity" and 
66 "adaptability," which were previously challenging to emulate. For 
67 example, the system demonstrates a function in which the output 
68 gradually decreases in response to innocuous stimuli. This 
69 contradicts the conventional belief that reliable signal conversion 
70 requires a consistent output for identical inputs. This aligns with the 
71 operational tendencies of biological sensory systems. In the artificial 

72 visual system, memristors emulate neuron-spiking models with high 
73 precision to simulate the functions of biological photoreceptors. By 
74 reducing the output in response to sudden increases in input signals, 
75 the system facilitates "light intensity detection" and "self-
76 protection." Notably, it efficiently extracts and delivers only essential 
77 information for actions, such as collision avoidance or blinking, from 
78 vast visual data inputs. Furthermore, while nociceptors have 
79 predominantly been implemented for tactile stimuli, the 
80 development of nociceptive functionality that is responsive to visual 

81 stimuli is particularly remarkable. In the artificial auditory system, 
82 the memristors are connected to additional circuits that emulate the 
83 filtering function of the cochlea. This system is designed to recognize 
84 only specific sound amplitudes based on memristor resistance, 
85 enabling "speech recognition" in the biological auditory system. This 
86 represents a significant advancement in artificial auditory systems. In 

87 the artificial olfactory system, memristors fabricated from gas-
88 sensitive materials integrate sensing and switching characteristics. 
89 This approach allows the detection of external stimuli without an 
90 additional circuit. Furthermore, memristor resistance varies 
91 depending on gas type, allowing for "recognition and memorization" 
92 of specific gases. These findings break the conventional stereotype 
93 that receptors are solely responsible for stimulus detection while 
94 synapses manage information storage. Instead, they demonstrate 
95 that bioinspired and highly efficient system architectures can 
96 perform multiple functions within a single device. Besides, 
97 conventional CMOS-based artificial neural systems struggle to 
98 implement advanced sensory functions. Even if achievable, such 
99 implementations typically require significant energy consumption 

100 and extended processing times. In contrast, memristor-based 
101 artificial sensory systems can efficiently emulate these advanced 
102 functions.
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1 While memristor-based artificial sensory systems demonstrate 
2 extensive potential, key challenges remain to be addressed. 
3 Although progress has been made in using memristors 
4 independently to detect stimuli and mimic sensory system functions, 
5 system-level integration remains challenging. Most implementations 
6 still rely on additional sensors and circuits primarily used for signal 
7 conversion, such as translating the firing frequency of artificial 
8 neurons into a form that other components can process. However, 
9 improving the energy efficiency of this conversion process has not 

10 been well explored. Although memristors themselves consume nJ to 
11 pJ-level low energy, integrating them with CMOS-based systems 
12 often introduces mismatches in electrical parameters, requiring 
13 additional circuitry for voltage conversion, signal processing, and 
14 computation. This increases system complexity and overall energy 
15 consumption, limiting memristors' ability to mimic biological sensory 
16 systems fully. Moreover, if memristors cannot be fabricated using 
17 CMOS-compatible materials and processes, chip-level integration 
18 becomes extremely challenging. Without chip-level integration, 
19 memristors and CMOS-based devices or circuits must be 
20 implemented separately, leading to undesirable consequences such 
21 as signal transmission noise, increased energy consumption, and 
22 larger system area. For instance, Section 4.2 discussed a memristor-
23 based model mimicking the LGMD neuron, which was integrated into 
24 a car robot to generate avoidance behavior based on optic input 
25 signals. However, implementing this system required power 
26 management chips for voltage conversion and counter circuits for 
27 spike frequency calculation, leading to a complex structure with 
28 additional energy consumption. Unfortunately, current research 
29 primarily focuses on enhancing the performance of individual 
30 memristor devices, with limited studies addressing CMOS 
31 compatibility and efficient architectures for seamless integration 
32 with CMOS-based systems. Therefore, developing a more advanced 
33 memristor-based architecture is essential to enable practical and 
34 energy-efficient system integration. Furthermore, addressing the 
35 following challenges is imperative for the advancement of artificial 
36 sensory systems. First, research on advanced data processing to 
37 perform complex tasks is required. Efficient management of 
38 spatiotemporal data requires multiple memristors working in 
39 conjunction, along with mechanisms to compare and integrate data 
40 from each device. Recent studies have primarily focused on single 
41 memristors, with limited algorithms developed for arrays or circuits. 
42 To mimic biological intelligence, it is essential to establish 
43 interconnections among memristors and integrate their functions. 
44 Additionally, research on integrated system-level memristor-based 
45 receptors, neurons, and synapses is significantly lacking. To construct 
46 artificial sensory systems, memristors emulate and integrate 
47 receptors, neurons, and synapses. However, most studies focus on 
48 them in isolation rather than as part of a cohesive system. Achieving 
49 more efficient conversion and data processing between system 
50 components is essential for accurately replicating biological sensory 
51 functions. For artificial sensory systems to function reliably, research 
52 must focus on compatible signal conversion between the pre- and 
53 post-components. These investigations have the potential to 
54 advance the overall integration of sensory systems by enabling 
55 electrical processing of neural signals for information transmission 
56 and ensuring accurate execution of output signals. In conclusion, this 
57 review provides a framework for implementing memristive artificial 

58 sensory systems based on the characteristics of biological 
59 components and switching properties of memristors.
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Fig. 1 Schematic of the artificial sensory system and functions, featuring integrated and collaborative networks of memristive receptors, neurons, and 
synapses.
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Fig. 2 Features and performances required to implement artificial sensory receptors, neurons, and synapses. Function characteristics of volatile and non-
volatile memristors to mimic sensory elements. 
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Fig. 3 (a) Threshold switching behavior, allodynia, and hyperalgesia. Schematic of an artificial thermal nociceptor circuit comprising a thermoelectric module 
and a volatile memristor. Generated voltage by thermoelectric module and threshold switching behavior. Reproduced with permission from ref. 76. 

Copyright 2018 Springer Nature (b) Bio-inspired artificial injury response system including a sense of pain, sign of injury, and healing. Lighting of light-
emitting diodes (LEDs) according to intensity of stimulation. Reproduced with permission from ref. 78. Copyright 2022 John Wiley and Sons (c) Pulse 

response of memristors to multiple 100 µs pulse widths with an amplitude of 3 V. Adaptation rates of 1, 2, and 3 nm Ag memristors are classified as rapidly, 
slowly, and no-adapting, respectively. Circuit schematic of an artificial sensory nervous system. Generated voltage from the thermoelectric module and 

volatile memristors was monitored by oscilloscope channels at hot plate temperatures of 40 and 70 °C. Reproduced with permission from ref. 81. Copyright 
2021 John Wiley and Sons
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Fig. 4 (a) Near-sensor analog computing using artificial tactile system. Resistance changes in synapse memristor using a continuous pulse train. Near-sensor 
analog computing for real-time edge detection of the captured pressure pattern. Reproduced with permission from ref. 85. Copyright 2022 John Wiley and 

Sons (b) Multimodal sensory system with multi sensors accepting pressure and temperature stimuli. Resistance modulation of the pressure and temperature 
sensors as a response to pressure and hot stimuli. Reproduced with permission from ref. 86. Copyright 2022 John Wiley and Sons (c) Characterization of 
artificial temperature perception VO2-based neuron memristor. Haptic-temperature fusion is based on a VO2 volatile memristor and MLP by simulation. 

Reproduced with permission from ref. 87. Copyright 2022 John Wiley and Sons
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Fig. 5 (a) Schematic illustration of the integrated 1PT1R structure device and light-tunable conductance update performance of the device. Reproduced with 
permission from ref. 93. Copyright 2023 John Wiley and Sons (b) Schematic illustration of light-induced synaptic modification mechanism based on photo-

induced redox reaction and current response after UV/Vis light irradiation. Reproduced with permission from ref. 94 Copyright 2021 John Wiley and Sons (c) 
Bio-inspired HH neuron for artificial retinal system with firing frequency modulated in a manner similar to photopic/scotopic adaptation of a biological 

photoreceptor. Reproduced with permission from ref. 95. Copyright 2022 John Wiley and Sons
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Fig. 6 (a) Multifunctional artificial visual perception nervous system using optoelectronic memristor based on an Sb2Se3 nanorod array. Increasing ON/OFF 
resistance ratio under light irradiation increases the firing frequency, activating an eyelid-shaped actuator. Reproduced with permission from ref. 96. 

Copyright 2022 John Wiley and Sons (b) Schematics of the artificial LGMD neuron device and current response under looming light stimulus. The formation 
of the Ag conductive filament is initially facilitated by the increasing light stimulus but ruptures due to Joule heating beyond a certain light intensity, 

providing information before the collision point. Reproduced with permission from ref. 97. Copyright 2021 Springer Nature (c) Schematic of the monolayer 
MoS2 device and current response under varying light intensity, pulse interval, and degree of injury. Reproduced with permission from ref. 98. Copyright 

2024 American Chemical Society
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Fig. 7 (a) Schematic of the human auditory perception system and monolayer MoS2-based device with Joule heating-driven conductance facilitation. ITD-
based sound localization can be achieved by suppressing interference and encoding only ITD information through artificial synaptic computation comprising 

the MoS2 device. Reproduced with permission from ref. 102. Copyright 2021 American Chemical Society (b) Object localization system in barn owls and 
proposed bio-inspired technology. Response varies across population, impacting both input gain and time constant. Owing to neuron-to-neuron variability, 
two output neurons of direction-sensitive coincidence detector respond differently to input stimuli. Thus, sound source can be identified. Reproduced with 

permission from ref. 103. Copyright 2022 Springer Nature (c) Conceptual diagram of memristor-based neuromorphic sound localization system. Multiple 
binaural features applied for neural processing to detect sound sources, including binaural time difference, spectral shape, etc. Reproduced with permission 

from ref. 104. Copyright 2022 Springer Nature
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Fig. 8 (a) Schematic of artificial cochlea speech recognition system used to demonstrate frequency-selection function of five channels in the cochlea. 
Channels have central frequencies determined by the resistance of a memristor. It achieved a recognition accuracy of 92% using 64 channels. Reproduced 

with permission from ref. 104. Copyright 2022 Frontiers Media S.A. (b) Design procedure of acoustic pattern (from recording, through transforming, to 
integrating). The van der Waals hybrid synapse was utilized to perform acoustic pattern recognition, a common task in speech and sound processing. 

Reproduced with permission from ref. 105. Copyright 2020 Springer Nature (c) Schematic of feature extraction from speech signals. Extracting features from 
speech signals enables successful training of SNN in both software- and memristor-based implementations, resulting in accurate classification inference. 

Reproduced with permission from ref. 107. Copyright 2021 John Wiley and Sons
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Fig. 9 (a) Bio-inspired neuromorphic olfactory system based on the memristive neural network comprising a gas sensor, sensory neurons, synapse arrays, 
and relay neurons. Sampling voltages in the LIF neuron. Larger input signals (red lines) results in shorter capacitor charging times (green lines), quicker 

device switching (blue lines), and higher output frequencies (orange lines). Training loss and testing accuracy of detection gas. Reproduced with permission 
from ref. 103. Copyright 2022 John Wiley and Sons (b) Schematic of biological olfactory cognitive process mimicking using chemi-memristive sensor. 
Response curves upon exposure to 1% H2 and I–V curves of TiO2 NRs. Conductance modulations based on type of target gas (reducing or oxidizing). 

Reproduced with permission from ref. 104. Copyright 2023 John Wiley and Sons
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Fig. 10 (a) Sensory information provided by volatile organic compounds sensed by olfactory sensory receptors. Demonstration of robot equipped with 
artificial olfactory memory system to visualize gas sensing. Higher concentration of VOCs above threshold resulted in switching of memory device and 

lighting up of LED. Reproduced with permission from ref. 118. Copyright 2021 John Wiley and Sons (b) Schematic illustration of nose comprised of four arc 
actuators. Response of the bionic nose to high concentration (500 ppm) ammonia and instantaneous current changes of artificial olfactory system and 

actuator array. Reproduced with permission from ref. 119. Copyright 2021 Elsevier
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Fig. 11 Schematic of biological and artificial sensory systems with a memristor.
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Table 1. A summary of memristive artificial sensory systems.

Sense Memristor Materials & Structure Biological Counterpart Specific feature Ref

Non-volatile
Ag/CsPbBr3/PVA/FTO Synapse

Mechanoreceptor
(Pressure) 120

Non-volatile
Al/CS:MWCNTs/ITO Synapse

Mechanoreceptor
(Pressure) 121

Non-volatile
Ag/TiOx/Ti3C2Tx/Au Neuron

Mechanoreceptor
(Pressure) 122

Volatile
Al/ZnO/FTO Synapse Nociceptor 123

Tactile

Volatile
Ag/c-YY NW/Ag Neuron

Mechanoreceptor
(Huminity) 124

Volatile
Al/Ag NW-embedded SA/SA/ITO Synapse/Neuron

Scotopic
/photopic adaptation 125

Volatile Cr/Au/WS₂/Cr/Au Synapse Color recognition 126

Volatile ITO/Ta2O5/Ag/IGZO/ITO Neuron Color recognition 127

Volatile/non-volatile FTO/NiO/Organic Interlayer/PMMA/Ag Synapse Color recognition 128

Visual

Volatile/non-volatile Pd/TiOx/ZnO/TiN Synapse Object tracking 129

Volatile
Pd/Nb/NbOx/Nb/Pd Synapse Sound Localization 130

Non-volatile
TiN/TaOy/HfOx/TiN Synapse Sound Localization 131

Non-volatile
TiN/HfOx/Ti/TiN Synapse Object localization 132

Auditory

Non-volatile
Pt/TiOx/AlOx/Pt Synapse

Audio-
Reward association 133

Non-volatile Ta/m-ZrO₂/Pt Synapse Odor recognition 134

Non-volatile
Al/pectin:Ag NPs/ITO Synapse Odor recognition 135

Volatile/non-volatile W/WO₃/PEDOT:PSS/Pt, Pd/W/WO₃/Pd Synapse/Neuron Gas-Classification 136

Olfactory

Non-volatile -/TiO₂ Nanowire/ Ti Sensor Odor recognition 137
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Table 2. Comparison of switching characteristics with CMOS-based devices.

Structure Operating voltage Switching Speed ION Ref

CMOS Sn-doped polycrystalline 𝛽-
Ga2O3 FET 10 V (VD) 0.5 s - 138

Ag/SnSe/Au Set : 0.474 55 ns 10 μA 139Receptor

Memristor

Pt/Ag/SiO₂ NRs/Ag/Pt
Set : - 0.72 V

+ 0.78 V
20 μs 1 μA 81

Si-based MOSFET
VG : -1 V

VD : > 3.5 V
0.1 s ≈  150 μA 140

CMOS

Si/SiO2/Si3N4/SiO2/Si-based 
MOSFET

VG : 12 V

VD : > 3 V
0.02 s ≈  150 μA 141

Pt/Ag/TaOx/Pt Set : 0.29 V 80 μs 0.1 μA 114

Ag/MoS2 nanosheet/

Ag/MoOx/Ag
Set : 0.3 V 16 ns 100 μA 31

Neuron

Memristor

Pt/Ag/ZnO/Pt Set : 0.17 V ≈  50 ns 10 μA 142

Si/WOx/SiO2-based FET
Write: 1.8 V (VG)

Erase : -2.5 (VG)
0.3 ms - 143

CMOS

IGZO channel-based FET
Write: 20 V (VG)

Erase : -20 V (VG)

100 ms (Write)

10 ms (erase)
≈  10 μA 144

Pd/WS2/Pt
Set : 0.6 V

Reset : -0.2 V
14 ns 1 μA 145

Al/PVP-CdSe QD/Al
Set : 0.61 V

Reset : -0.5 V
41 ns 5.2 μA 146

Synapse

Memristor

ITO/CdS QDs-PVP/Al
Set : 1.08 V

Reset : -0.72 V
42 ns 4.44 μA 147
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