[View Article Online](https://doi.org/10.1039/d4nr04392h) [View Journal](https://rsc.66557.net/en/journals/journal/NR)

Nanoscale

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: M. Suta*, Nanoscale*, 2025, DOI: 10.1039/D4NR04392H.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the [Information for Authors.](http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp)

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](http://www.rsc.org/help/termsconditions.asp) and the [Ethical guidelines s](http://www.rsc.org/publishing/journals/guidelines/)till apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/nanoscale

ARTICLE

What makes β-NaYF4:Er3+, Yb3+ such a successful luminescent thermometer?

Markus Suta*^a

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Luminescence thermometry has emerged as a promising approach for remote, non-invasive temperature sensing at the nanoscale. One of the simplest approaches in that regard is single-ion luminescence Boltzmann thermometry that exploits thermal coupling between two radiatively emitting levels. The working horse example for this type of luminescence thermometry is undoubtedly the green-emitting upconversion phosphor β -NaYF₄:Er³⁺, Yb³⁺ exploiting the thermal coupling between the two excited ²H_{11/2} and ⁴S_{3/2} levels of Er³⁺ for this purpose. Within this tutorial article, I would like to give a theoretically motivated account on the underlying reasons for the experimentally recorded success of this material for Boltzmann thermometry referring to time-resolved data on both the bulk and nanocrystalline material. Guidelines are established and both advantages and potential pitfalls in B-NaYF₄:Er³⁺, Yb³⁺ for luminescence thermometry are given.

Introduction

Remote temperature sensing by means of a luminescence signal (luminescence thermometry) has revolutionized phosphor research and has been one of its dominating areas since the early 2000s $1-6$. Among the various possibilities to use temperature-dependent luminescence for calibration in thermometry, self-referenced ratiometric thermometry is one of the simplest approaches⁴. It exploits the fact the luminescence intensity ratio (LIR) of thermally coupled, radiatively emitting excited states from the same electron configuration follows Boltzmann's law thus enabling an appealingly simple calibration of such an optical thermometer. A representative example of this concept are the green-emitting ${}^{2}H_{11/2}$ and ${}^{4}S_{3/2}$ levels of the Er³⁺ ion discussed within this work. Usually, the energy splitting between thermally coupled electronic states should be in the order of the thermal energy $k_B T$ to be probed (k_B is Boltzmann's constant), which is roughly $10^2 - 10^3$ cm⁻¹ for temperatures around room temperature and $10^1 - 10^2$ cm⁻¹ for cryogenic temperatures. The trivalent lanthanoid ions with the intraconfigurational 4f*ⁿ* -4f*ⁿ* transitions ($n = 2$ for Pr³⁺ to $n = 12$ for Tm³⁺) in the ultraviolet (UV), visible, and near infrared (NIR) range are naturally suited for that purpose because the low linewidth of the related emission lines allows to spectrally resolve such low energy gaps⁷. Thus, thermal coupling between different spin-orbit levels of the lanthanoids is useful for thermometry at around room temperature and above $7,8$, while thermal coupling between different crystal field states is required for cryogenic temperature measurements exploiting singleion Boltzmann thermometry⁹⁻¹¹. While it is often argued in literature that the energy gap should not exceed 2000 $cm⁻¹$ for effective thermometry, it should be noted that this statement depends on the temperature of interest, and energy gaps beyond 2000 $cm⁻¹$ can be Solution the main of the second with the second a symming speech to emusion since the main of the second and the sec

easily exploited if the intrinsic non-radiative coupling between excited states is sufficiently strong or temperatures are high enough¹²⁻¹⁴. This is usually encountered in so-called crossover luminescent thermometers that probe thermal coupling between excited states of different electronic configurations such as $Pr³⁺,¹⁵⁻¹⁹$ selected divalent lanthanoid ions,^{14,20-23} or thermally activated delayed fluorescent emitters²⁴⁻²⁷. In the context of this tutorial article, only the case of classic ratiometric Boltzmann luminescent thermometers will be considered.

Although the electronic structure of the trivalent lanthanoids formally offers a rich variety of possibilities for luminescence thermometry, the prominent upconversion phosphor β -NaYF₄:Er³⁺, Yb³⁺ stands out in this regard^{28,29}. In this phosphor, NIR excitation of the Yb $3+$ ions at 980 nm leads to bright green upconverted emission from the thermally coupled excited ${}^{2}H_{11/2}$ and ${}^{4}S_{3/2}$ levels of Er³⁺. Probably, also the excellent size and habitus control of nanocrystalline β -NaYF₄:Er³⁺, Yb³⁺ without significant loss in its upconversion performance has additionally contributed to the huge recorded success of that compound in the field^{30,31}.

Er3+ was established as one of the pioneering ratiometric luminescent thermometers with various milestones, first in fluoridic ZBLAN fibers in 1990 32 , then in BaTiO₃ in 2004 33 , and finally as nanocrystalline β-NaYF₄:Er³⁺, Yb³⁺ in 2009.³⁴ Since then, the latter compound has been constantly exploited as the working horse example for tests of luminescence thermometry in real-case applications including catalysis and microflow reactors, $35-39$ probing of Brownian motion, ^{40,41}, thermal imaging of microelectronic $circuits⁴²$, plasmonic heating^{43,44} and heat transfer along lipid bilayers^{45,46}. Other examples include temperature monitoring within a mitochondrium⁴⁷, pushing of the single nanothermometric level within a heated nanowire⁴⁸, or recording of density fluctuations of water⁴⁹. The established success of this upconversion phosphor for thermometry even allowed to shed light on potential biases in luminescence nanothermometry50-53. But what makes this phosphor stand out compared to many other lanthanoid-activated inorganic

a. Inorganic Photoactive Materials, Institute of Inorganic Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany. E-mail: markus.suta@hhu.de

compounds that leads to this constantly recorded experimental success? Based on recently established theoretical guidelines for Boltzmann thermometers, 8 I would like to elaborate on the consequences for Er^{3+} and demonstrate from thermodynamic and kinetic viewpoints – using both measured and reported data – why β -NaYF₄:Er³⁺, Yb³⁺ is actually such a successful luminescent Boltzmann thermometer and what practical issues can potentially arise when it is used in its nanocrystalline rather than microcrystalline form.

Results and Discussion

Synthesis. A microcrystalline sample of the nominal composition β-NaY_{0.80}Er_{0.02}Yb_{0.18}F₄ (hereafter simply referred to as β-NaYF₄:Er³⁺, Yb^{3+}) has been prepared by a conventional solid-state chemical route. For that purpose, Y₂O₃ (99.999%, Chempur), Er₂O₃ (99.999%, Chempur) and Yb_2O_3 (99.99%, smart-elements) were dissolved in the respective stoichiometric amounts in 6 mL concentrated HCl (37%, Fisher Scientific) upon heating at around 100 °C until the solution became completely transparent. After that, the solvent level was carefully reduced at 80 °C and gradually diluted with distilled H_2O . Subsequently, the pH was increased to 5 by dropwise addition of aqueous, concentrated NH₃ (28 – 30 wt%, Thermo Scientiifc) solution. Finally, an excess of saturated $(NH_4)_2CO_3$ (98%, Thermo Scientific) solution was added resulting in a precipitation of the basic rare earth carbonates. The dried colourless residue was reacted with 3 eq NH₄HF₂ (98%, Thermo Scientific) at 120 °C for 1 h, thoroughly mixed with additional 3 eq NH_4HF_2 and reacted at 150 °C before final reaction with 2 eq NaBF₄ (98%, Chempur) at 500 °C under a N₂ atmosphere. According to X-ray powder diffraction, it was phase pure, although some reflections are shifted compared to the reflections of the database pattern of β -NaYF₄ (ICSD: 51916) based on the presence of the smaller Er^{3+} and Yb^{3+} ions that change the lattice constants of the prepared compound. section based on enough assumed the order of a matter in the section of a strength and the section of the section of

Characterization. The sample purity was assessed by means of X-ray powder diffraction on a X'Pert diffractometer (Malvern Panalytical, Cu *Kα* radiation) working with Bragg-Brentano geometry. The powdered sample was measured in reflection mode on an Al sample holder. Steady-state and time-resolved photoluminescence were measured on a FLS1000 photoluminescence spectrometer (Edinburgh Instruments) equipped with a 450 W Xe lamp, Czerny-Turner double grating monochromators (focal length 2 x 325 mm, blazed at 400 nm and 500 nm, respectively) in both the excitation and emission compartment, and a thermoelectrically (–20 °C) cooled PMT-980 detector (Hamamatsu). A continuous-wave laser with variable power density emitting at *λ* = 980 nm (PhotonTec, estimated power density of the unfocused beam for the experiments in this work: ~ 5.5 mW cm⁻²) was used as an excitation source, while the luminescence decay of the green emission was recorded with a VPL-510 laser (Edinburgh Instruments; *λ*ex = (515 ± 5) nm, 70 mW average incident power, variable temporal pulse width, repetition rate *f* = 125 Hz). Upconversion emission spectra were corrected for the grating efficiency and detector sensitivity. Temperature-dependent luminescence spectra were acquired with a Linkam Scientific THMS600 cell (accuracy \pm 0.1 °C) between 77 K and 823 K.

Thermodynamic assessment. In its dynamic working [range, the LIR,](https://doi.org/10.1039/d4nr04392h) *R*21(*T*), between two emission peaks with intensities *I*20 and *I*10 for the transitions from two thermally coupled excited levels $|2\rangle$ and $|1\rangle$ to a common ground level $|0\rangle$ of a luminescent Boltzmann thermometer follows the simple calibration law

$$
R_{21}(T) = \frac{I_{20}}{I_{10}} = C \frac{g_2}{g_1} \exp\left(-\frac{\Delta E_{21}}{k_B T}\right)
$$
 (1)

with *C* as electronic pre-factor (see below), g_2 and g_1 as the degeneracies of the excited levels, $ΔE₂₁$ as the mutual energy gap between the two thermally coupled excited levels $|2\rangle$ and $|1\rangle$, and k_B as Boltzmann's constant.

For a better mechanistic understanding of luminescent Boltzmann thermometers, it is advisable to use microcrystalline instead of nanocrystalline samples to avoid an impact of surface-attached ligands or surrounding solvent molecules to non-radiative transitions. Typically, the two green-emitting spin-orbit levels ${}^{2}H_{11/2}$ = $|2\rangle$ and ${}^{4}S_{3/2} = |1\rangle$ of the Er³⁺ ion are probed for luminescence Boltzmann thermometry ¹⁴. In the host β -NaYF₄, they are separated by an energy gap of ΔE_{21} = (650 ± 10) cm⁻¹ according to highresolution excitation spectra of a representative microcrystalline sample at 77 K (see [Figure 1](#page-3-0).(a)), in good agreement to earlier reports^{53,54}. It is noteworthy that many publications report varying values for this energy $gap^{35-39,55,56}$, but photoluminescence excitation spectra offer an unambiguous reference for this value that can be related to the estimated gap according to a Boltzmann fit of the temperature-dependent LIR (see [Figure 1](#page-3-0).(b) and (c)). Given that value for Δ*E*21, it can be estimated that the thermodynamic optimum operating temperature range for an Er³⁺-based Boltzmann thermometer, in which it works with highest possible statistical precision,⁸ is given by

$$
T_{\rm opt} \in \left[\frac{\Delta E_{21}}{(2+\sqrt{2})k_{\rm B}}, \frac{\Delta E_{21}}{2k_{\rm B}}\right] = [275 \text{ K}, 468 \text{ K}] \tag{2}
$$

In that temperature range, there is a compromise between high relative sensitivity *S*r(*T*) and appreciable signal-to-noise ratio of the emission peaks stemming from both excited levels. Thus, $Er³⁺$ is particularly suited as a luminescent thermometer for biologically relevant temperatures, which nicely coincides with its application in upconversion phosphors for bioimaging applications⁵⁷. In the optimum temperature range according to eq. [\(2\)](#page-2-0), the relative sensitivities of the Er³⁺-based Boltzmann thermometer vary between $S_r(T = 275 \text{ K}) = 1.24\% \text{ K}^{-1}$ and $S_r(T = 468 \text{ K}) = 0.43\% \text{ K}^{-1}$. It should be noted, however, that the relative sensitivity does not fully determine the performance of a luminescent thermometer, but rather the overall expected relative statistical uncertainty, which will be addressed below.

A second important feature relates to the radiative transition rates of both involved emission lines. Usually, the low intensity of the higher energetic emission poses a fundamental limitation to the precision of any luminescent Boltzmann thermometer as its intensity is typically dominated by the thermal population of the higher excited level and thus, the exponential Boltzmann factor of eq. [\(1\).](#page-2-1) However, an additionally beneficial factor for the overall precision of the luminescent Boltzmann thermometer can be the pre-constant $Cg₂/g₁$ based on the motivation that a LIR should be in the order of 10⁰ in a regarded temperature range for highest precision.

Figure 1. Characteristics of microcrystalline β-NaYF4: 2 mol% Er3+, 18 mol% Yb3+ for luminescence Boltzmann thermometry. **(a)** High-resolution photoluminescence excitation spectra at *T* = 77 K (plotted against wavenumbers) upon monitoring the red ⁴F_{9/2} \rightarrow ⁴1_{15/2}-based emission at λ_{em} = 650 nm. The effective energy gap between the ⁴S_{3/2} and ²H_{11/2} level is indicated. (b) Temperature-dependent upconversion spectra of β-NaYF₄: 2 mol% Er³⁺, 18 mol% Yb³⁺ upon near infrared excitation (*λ_{ex}* = 980 nm) between 77 K and 823 K. The spectra were normalized with respect to the emission peak at 540 nm. (c) Plot of the LIR of the two green emission bands of Er³⁺ against reciprocal temperature in the measured temperature range. Integration ranges were between 510 nm and 533 nm as well as 533 nm and 555 nm, respectively. The red line corresponds to a fit according to eq. (x). Both the estimated onset temperature *T*_{on} and the optimum working range according to eq. [\(2\)](#page-2-0) are indicated. (d) Luminescence decay curve of the ⁴S3/2 → ⁴15/2-based emission ($\lambda_{\rm{em}}$ = 540 nm, spectral bandwidth Δλ = 1.5 nm) upon direct excitation into the ²H_{11/2} level (λ_{ex} = 515 nm) at *T* = 77 K. The solid line represents an effective triexponential fit and gives an intensity-weighted average decay time of $(τ)$ = 0.41 ms. (e) Schematic energy level scheme for the cooperative upconversion process between Yb³⁺ and Er³⁺. Solid, straight arrows depict absorption (upward) or emission (downward) pathways. Relevant nonradiative processes in this work are indicated by curly black arrows. (f) Powder X-ray diffraction pattern (Cu K*α* radiation) of as-synthesized microcrystalline β-NaYF₄: 2 mol% Er³⁺, 18 mol% Yb³⁺ compared to a diffraction pattern derived from single-crystal structure data of β-NaYF₄ (ICSD: 51916).

ARTICLE Journal Name

In the case of Er³⁺, it is g_2 = 12 and g_1 = 4, if thermalization between the different Stark states in a ligand field is assumed (which is given in the optimum temperature range according to eq. [\(2\)](#page-2-0)). It has been demonstrated that a thermodynamically advisable value for Cg_2/g_1 should be ⁸

$$
C_{\rm opt} \frac{g_2}{g_1} = \frac{\exp{(2+\sqrt{2})}}{\sqrt{2}} \approx 21.5
$$
 (3)

The electronic pre-constant *C* is connected to the spontaneous emission rates A_{20} and A_{10} for the radiative transitions $|2\rangle \rightarrow |0\rangle$ and $|1\rangle \rightarrow |0\rangle$,

$$
C = \frac{A_{20}}{A_{10}} = \frac{\beta_{20}k_{2r}}{\beta_{10}k_{1r}}
$$
 (4)

where θ_{20} and θ_{10} are the branching ratios of the respective transitions and k_{2r} and k_{1r} are the (experimentally accessible) total radiative decay rates of the excited levels $|2\rangle$ and $|1\rangle$. It should be noted that no emission energies enter eq. [\(4\),](#page-4-0) as is commonly found in literature due to the fact that most modern spectrometers measure intensities by photon counting 8.

Please do Nanoscalet margins

ization between with all symbol

(which is given high-quality nar

(2)). It has been easily achievably achievable for Gg/g_1 unconverted en E_1^{3*} a very precise addition process that lea In the case of Er^{3+} in β-NaYF₄, careful diffuse reflectance measurements on microcrystalline powders allow an estimate for the exponential pre-constant for Er^{3+} of $Cq_2/q_1 = 18.9$, which is close to the optimum value for highest precision according to eq. [\(3\).](#page-4-1) In contrast, Judd-Ofelt calculations rather yield a value of $Cg_2/g_1 = 7.7$ indicating that the range of possible *C* values in literature can vary significantly^{58,59}. Such high values for the exponential prefactor mean that the intensity of the higher energetic ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$ -based emission of $Er³⁺$ at around 525 nm shows a higher spontaneous radiative emission rate or oscillator strength. This fact becomes particularly prominent at higher temperatures, at which the ${}^{2}H_{11/2} \rightarrow$ ⁴l_{15/2}-based emission at around 525 nm is even more intense than the $4S_{3/2}$ \rightarrow $4I_{15/2}$ -based emission at around 540 nm (see [Figure 1.](#page-3-0)(b)). Such a feature is very uncommon for most other thermometrically exploited lanthanoid ions such as Nd^{3+} , Gd^{3+} , or Eu³⁺, for which it is generally $A_{20} \lesssim A_{10}$ and thus, $Cg_2/g_1 < 10^1$. It should be noted that photonic effects can additionally affect this pre-constant and have to be taken into account for nanothermometers in the vicinity e.g., mirroring surfaces⁵³. In this particular compound, an exponential pre-factor of $Cg_2/g_1 = 5.52 \pm 0.21$ is estimated, although the error range is probably even larger given that it is in principle estimated from an extrapolation of the LIR formally infinite temperatures. The overall unusually high value (partially related to the high *J* degeneracy of the ${}^{2}H_{11/2}$ level) electronically contributes to an appreciable signal-to-noise ratio from both green emission band and thus, enhances the overall precision of the $Er³⁺$ -based luminescent thermometer. The direct Siph and disk in Euckle Routest Representation of the pairs concerns of the Content Siph and an expected in the content Representation of the Content Siph and disk in the content Siph and disk in the content Si

In its optimum performance range (see eq. (2)) and with an intensity of the ${}^{4}S_{3/2}$ \rightarrow ${}^{4}I_{15/2}$ -based emission of I_{10} = 10⁶ cts, the minimum expected relative uncertainty σ ^{*T*} of the Er³⁺-related luminescent thermometer is constantly below 0.08% according to ⁸

$$
\frac{\sigma_T}{T} = \frac{k_B T}{\Delta E_{21}} \frac{1}{\sqrt{I_{10}}} \sqrt{1 + \frac{1}{R_{21}(T)}}
$$
(5)

with all symbols as defined before. For microcrystalline as well as high-quality nanocrystalline β-NaYF₄:Er³⁺, Yb³⁺, these intensities and easily achievable with low incident power densities. In addition, upconverted emission is particularly background-free thus making $Er³⁺$ a very precise luminescent Boltzmann thermometer. Higher incident power densities of the NIR excitation light can, however, introduce additional systematic deviations based on a three-photon process that leads to interfering ${}^{2}H_{9/2} \rightarrow {}^{4}I_{13/2}$ -based emission in the green spectral range ^{60,61}.

Kinetic assessment. So far, it has been demonstrated that the greenemitting ²H_{11/2} and ⁴S_{3/2} levels of Er³⁺ fulfil many of the required conditions for thermodynamically motivated optimum performance as a single-ion luminescent Boltzmann thermometer in the physiological temperature range with high statistical precision. Besides this thermodynamic motivation, the kinetic interplay between radiative decay of the lower energetic excited $4S_{3/2}$ level and non-radiative coupling between the excited levels is relevant for the dynamic working range of any single ion as a luminescent Boltzmann thermometer^{8,62}.

In the case of Er^{3+} , the radiative decay rate (corrected for reabsorption effects) of the ${}^4S_{3/2}$ level in β-NaYF₄: 0.1 mol% Er³⁺ is k_{1r} = 1.55 ms⁻¹, in good agreement with earlier calculations^{58,63}. This competition poses a natural, kinetically induced onset temperature T_{on} for such a luminescent Boltzmann thermometer below which the two excited states decouple and thermal equilibrium is not sustained anymore since the nonradiative absorption rate cannot compete with radiative decay of the lower energetic excited level anymore^{8,62}. The nonradiative transitions among 4fⁿ spin-orbit levels is most dominantly governed by the energy gap law of multiphonon transitions⁶⁴. It was demonstrated that the energy gap Δ*E*₂₁ is ideally bridged by no more than *p* = 2 vibrational modes to ensure that the onset temperature for thermal equilibrium is below the optimum range as defined in eq. [\(2\)](#page-2-0) ⁸. This is clearly given in the case of β-NaYF₄:Er³⁺, Yb³⁺ with a cutoff phonon energy of $\hbar\omega_{\text{cut}}$ = 450 cm^{-1 65} and the respective energy gap of $\Delta E_{21} = (650 \pm 10)$ cm⁻¹. If nonradiative thermal coupling involves $p = 2$ effective phonon modes of energy $\hbar\omega_{\text{eff}} = \Delta E_{21}/p$, the expected onset temperature T_{on} for Boltzmann behaviour of the LIR can be derived as ⁸

$$
T_{\text{on}} = \frac{n\omega_{\text{eff}}}{k_{\text{B}}\ln\left[1 + \left(\frac{g_2k_{\text{nr}}(0)}{k_1}\right)^{1/p}\right]}
$$
(6)

 \mathbf{r} .

[Figure 1.](#page-3-0)(c) depicts the temperature-dependent LIR of the two green emission bands of Er³⁺ in the representative microcrystalline β-NaYF₄: 2 mol% Er³⁺, 18 mol% Yb³⁺ sample (see Synthesis section for more details) between 77 K and 823 K obtained upon excitation with 980 nm to eliminate background for higher accuracy. From the estimated onset temperature of T_{on} = (100 \pm 5) K according to the recorded LIR between the ${}^{2}H_{11/2}$ - and ${}^{4}S_{3/2}$ -based emission bands in the green range and an average decay rate of $k_1 = 2.43 \text{ ms}^{-1}$ (see [Figure 1.](#page-3-0)(d)), an intrinsic nonradiative transition rate of $k_{\text{nr}}(0) = (2.29 \pm 0.54) \,\mu s^{-1}$ governing the coupling the ²H_{11/2} and ⁴S_{3/2} level can be estimated from eq. [\(6\)](#page-4-2). The value appears reasonable

Journal Name ARTICLE

given the fact that detection of the luminescence decay trace of the $4S_{3/2}$ -based emission of Er³⁺ in β-NaYF₄ at 77 K (see [Figure 1](#page-3-0).(d)) upon excitation into the ${}^{2}H_{11/2}$ level does not reveal any rise component even if the pulse width is decreased to 0.1 µs and the decay is regarded in a μ s time range. This implies that the feeding of the $4S_{3/2}$ level proceeds faster than 1 µs, matching the upper estimate for *k*nr(0). Compared to many other lanthanoid ions with similar twophonon nonradiative transitions between their excited levels such as $Eu³⁺$, the intrinsic nonradiative coupling between the excited levels of Er³⁺ is unusually strong and indicates an induced electric dipolar nature of the respective nonradiative transition ⁸. A measure for that can be the relevant matrix elements for induced electric dipolar transitions as originally suggested by Judd and Ofelt^{66,67}. For the $^2\mathsf{H}_{11/2} \Longleftrightarrow \mathbb{D}^4\mathsf{S}_{3/2}$ transition, they read $\|\langle \bm U^{(k)} \rangle\|^2$ ($\|\langle \bm U^{(2)} \rangle\|^2 = \bm{0.000}$, $||\langle U^{(4)}\rangle||^2 = 0.2002$, $||\langle U^{(6)}\rangle||^2 = 0.0097$) according to Carnall *et al*. ⁵⁴, which are higher than for most other thermometrically relevant nonradiative transitions within the trivalent lanthanoids. For comparison, a respective two-phonon non-radiative transition rate between the ⁵D₁ and ⁵D₀ levels of Eu³⁺ in e.g., LaPO₄ or LaBO₃ is in the order of only $10¹$ ms⁻¹ and indicates a magnetic dipolar transition⁶⁸, as was also originally proposed by Weber⁶⁹.

According to the energy gap law, it could be questioned why no host compound with higher cutoff phonon energies resonant to the energy gap Δ*E*21 such as aluminates, vanadates, phosphates, or borates could be more recommendable for $Er³⁺$ as a luminescent Boltzmann thermometer. The reason for that point lies in the special electronic landscape of the $Er³⁺$ ion. Besides the two thermally coupled green emitting levels, there is also a red-emitting lower energetic ${}^{4}F_{9/2}$ level ca. 2800 cm⁻¹ below the ${}^{4}S_{3/2}$ level (see Figure [1](#page-3-0).(e)). Thus, even if a higher cutoff phonon energy may accelerate the nonradiative thermal coupling between the green-emitting ${}^{2}H_{11/2}$ and $4S_{3/2}$ levels of Er³⁺, competitive nonradiative multiphonon relaxation from the ${}^4S_{3/2}$ level to the ${}^4F_{9/2}$ level also becomes more effective thus increasing the total decay rate k_1 of the $4S_{3/2}$ level that the nonradiative absorption rate to the ${}^{2}H_{11/2}$ level has to compete with. An example demonstrating this problem is YVO₄: 0.1 mol% Er³⁺. This compound has a higher cutoff phonon energy of h ω_{cut} = 890 cm⁻¹ resulting in a higher decay rate of k_1 = 10² ms⁻¹ of the $4S_{3/2}$ level in that host due to faster non-radiative relaxation to the lower energetic ${}^{4}F_{9/2}$ level⁷⁰. In contrast, no phonon modes with an energy of 650 $cm⁻¹$ are present in xenotime-type YVO₄ excluding a resonant one-phonon process for the non-radiative coupling between the ²H_{11/2} and ⁴S_{3/2} level of Er³⁺ in that host^{71,72}. Consequently, the onset temperature for thermalization between those two green-emitting levels in YVO₄: 0.1 mol% Er³⁺ is only at T_{on} = 135 K,⁷⁰ even above the respective value in β -NaYF₄:Er³⁺ (, Yb³⁺). The non-radiative coupling strength between the ${}^{2}H_{11/2}$ and ${}^{4}S_{3/2}$ level can be estimated by $k_{nr}(0) \approx 7 \,\mu s^{-1}$ in YVO₄: 0.1 mol% Er³⁺ based on the reported spectroscopic data, in the same order of magnitude as for β -NaYF₄:Er³⁺, Yb³⁺.

Thus, at high temperatures, nonradiative multiphonon relaxation from the ${}^4S_{3/2}$ = $|1\rangle$ to the red-emitting ${}^4F_{9/2}$ = $|q\rangle$ level can become a general limitation for β-NaYF₄:Er³⁺, Yb³⁺ as a luminescent Boltzmann thermometer. However, given a mutual energy gap of $\Delta E_{1q} \approx 2800$ cm⁻¹, it can be derived from the thermal occupation of phonons that the onset temperature for stimulated (and 4thas, thermally accelerated) nonradiative relaxation from the $4S_{3/2}$ to the red-emitting ${}^{4}F_{9/2}$ level is about 8

$$
T_q = 0.2227 \frac{\Delta E_{1q}}{k_\text{B}} \approx 900 \text{ K}
$$
 (7)

This makes Er³⁺ formally suited as a classic Boltzmann thermometer over a wide temperature range between 77 K and 900 K in β-NaYF₄. Another high-temperature limitation in this host is the phase transition to the cubic fluorite-type α polymorph, which occurs, however, at around 1050 K in the bulk compound and may be even at lower temperatures in nanocrystalline NaYF₄⁷³.

Difference between microcrystalline and nanocrystalline samples and other practical problems. Another practical aspect is the usage of nanocrystalline core-only β-NaYF₄ instead of a microcrystalline powder. In that case, the surface-attached organic ligands or, alternatively, surrounding solvent molecules with *X*-H vibrational modes (*X* = C, N, O) dominate the nonradiative transitions within the $Er³⁺$ ion. While this fact accelerates the relaxation pathway from the green-emitting ${}^4S_{3/2}$ to the red-emitting ${}^4F_{9/2}$ level (one of the major reasons why core-only β -NaYF₄:Er³⁺, Yb³⁺ nanocrystals often show more dominant red upconverted emission upon NIR excitation)^{63,74}, the thermometrically relevant nonradiative ${}^{2}H_{11/2} \leftarrow {}^{4}S_{3/2}$ absorption transition is not significantly enhanced. As a consequence, the expected minimum onset temperature T_{on} for Boltzmann-type luminescence thermometry with $Er³⁺$ is generally higher in nanocrystalline β-NaYF4 than in the analogous microcrystalline samples. Reported values for the average decay rate k_1 of the $4S_{3/2}$ level of core-only β-NaYF₄: 0.1 mol% Er³⁺ nanocrystals in various solvents are maximally $k_1 = 3$ ms⁻¹ including the photonically induced enhancement due to the refractive index n of the solvent⁶³. Assuming that there is a resonant vibrational mode that would allow a one-phonon bridging of the energy gap of ΔE_{21} = (650 ± 10) cm⁻¹, it can be estimated from eq. [\(2\)](#page-2-0) that the onset temperature could be even decreased to T_{on} = 88 K taking into account that the nonradiative coupling becomes stronger by around an order of magnitude to $k_{\text{nr}}(0) \approx 10 \,\mu s^{-1}$ according to the energy gap law ⁶⁴. ⁵ so boat meant of the interest of the same 37.6 corresponding percent to the one temperature for the same interest of the same inter

In practice, however, higher activator fractions are used in nanocrystalline β-NaYF4 for brighter upconversion emission upon NIR excitation. A competitive depopulation channel in such a case is cross-relaxation. It has been demonstrated that both at higher Er^{3+} and Yb³⁺ contents in β-NaYF₄, the ⁴S_{3/2} level decays faster due to additional cross-relaxation based on an interaction with neighbouring Er^{3+} or Yb³⁺ ions. This is also the reason for the faster decay observed in the presented microcrystalline sample of β-NaYF₄:Er³⁺, Yb³⁺ (see [Figure 1.](#page-3-0)(d)) and can be quantitatively assessed with the shell model of energy transfer ^{63,75}. In the following, I want to show that the choice of the right activator fractions is a compromise between the performance as a bright upconversion phosphor and the dynamic working range as a Boltzmann luminescent thermometer. Higher Er³⁺ and Yb³⁺ fractions and the consequent faster decay of the ${}^{4}S_{3/2}$ level (higher decay rate k_1) will

lead to an increase of the expected onset temperature (see eq. [\(6\)\)](#page-4-2). Similar effects are known from e.g., $Nd^{3+76,77}$. Therefore, it is generally recommended to use core-shell nanostructures and keep track of activator concentrations to limit internal cross-relaxation effects between Er^{3+} ions or between Er^{3+} and Yb^{3+} ions. For example, in core-shell nanocrystals of $β$ -NaYF₄: 2 mol% Er³⁺, the average decay rate of the ${}^4S_{3/2}$ level increases to around $k_1 = 4$ ms^{-1 63}, while in the case of respective β-NaYF₄: 2 mol% Er³⁺, 18% Yb³⁺ nanocrystals, it even increases to k_1 = 5 ms^{-1 63}. These values result in expected onset temperatures of T_{on} = 106 K and T_{on} = 109 K, respectively, still much below the optimum performance range according to eq. [\(2\)](#page-2-0) assuming a similar non-radiative coupling rate as in microcrystalline samples. If, in addition, core-only nanocrystals are used, the respective decay rate increases to $k_1 = 8 \text{ ms}^{-1}$ (2 mol% Er³⁺) and $k_1 = 10 \text{ ms}^{-1}$ (2 mol% Er³⁺, 18 mol% Yb³⁺)⁶³, resulting in maximum expected onset temperatures of T_{on} = 115 K and T_{on} = 118 K, respectively. Thus, although the additional quenching pathways in nanocrystalline upconversion phosphors can lead to a difference in the onset temperature of up to around 18 K, the effect is still not practically problematic if Er³⁺ is used as a Boltzmann thermometer in its optimum performance range at physiological temperatures (see eq. [\(2\)](#page-2-0)). Yet, it is important to bear these effects in mind once lower temperatures are supposed to be measured with the green-emitting levels of Er³⁺ (although not thermodynamically recommendable). Overall, $Er³⁺$ is a particularly robust Boltzmann thermometer whose intrinsic electronic properties make it stand out compared to many other lanthanoid-based luminescent thermometers and support a unique, wide dynamic working range. The host compound $β$ -NaYF₄ combines many beneficial features that make $Er³⁺$ perform almost at optimum theoretically suggested conditions both from a thermodynamic and kinetic perspective. show effects are leave that as $\Delta t = \frac{1}{2}$ and $\Delta t = \frac{1}{$

Conclusions

The upconversion phosphor β-NaYF₄:Er³⁺, Yb³⁺ is one of the working horse examples of a Boltzmann luminescent thermometer with a huge experimentally recorded success. In this tutorial work, it is demonstrated by recently developed thermodynamic and kinetic guidelines what makes Er^{3+} a primary candidate for Boltzmann thermometry. The greenemitting ²H_{11/2} and ⁴S_{3/2} levels of Er³⁺ are particularly suited for temperature measurements slightly above room temperature (between 275 K and 468 K) with highest possible statistical precision. The special feature of a higher spontaneous emission rate of the higher energetic ²H_{11/2} level in the Er³⁺ ion leads to a favourable electronic pre-factor *C* that ensures a LIR of the green emission bands close to 1 and is additionally beneficial for high readout precision. Besides those thermodynamic aspects, a unique property of Er^{3+} among the trivalent lanthanoid ions is the high non-radiative coupling strength between the ${}^{2}H_{11/2}$ and ${}^{4}S_{3/2}$ levels of $k_{nr}(0) = (2.29 \pm 0.54) \mu s^{-1}$, much stronger than for most other lanthanoid ions. This extraordinarily high value stems from an induced electric dipolar nature of the nonradiative transition and renders a particularly wide dynamic working range of Er^{3+} as a Boltzmann thermometer. It results in

ARTICLE Journal Name

very low onset temperatures for thermal coupling of the greenemitting levels in the range of $T_{on} = (200 \frac{10.16389}{R} \times 4 \frac{1000 \frac{10.16881}{R}}{R}$ compound β-NaYF⁴ with its low cutoff phonon energy of only 450 $cm⁻¹$ is beneficial for a limitation of the nonradiative multiphonon relaxation of the ${}^{4}S_{3/2}$ level into the red-emitting ${}^{4}F_{9/2}$ level, even if already two phonon modes need to be consumed to bridge the energy gap of 650 $cm⁻¹$ between the two green-emitting levels.

Two major competitive processes could potentially increase the onset temperature for Boltzmann behaviour of the LIR of the green emission bands of Er³⁺. One of them is the previously indicated nonradiative relaxation pathway to the red-emitting $4F_{9/2}$ level, which is more prominent in nanocrystalline (particularly core-only) β-NaYF₄: Er³⁺, Yb³⁺ due to the higherenergetic X -H (X = C, N, O) functional groups of surface-attached ligands or, alternatively, the surrounding solvent molecules. The other competitive pathway is cross-relaxation based on an interaction with neighbouring Er^{3+} and/or Yb³⁺ ions. Both described pathways effectively increase the total decay rate of the $4S_{3/2}$ level and thus, the onset temperature T_{on} . It was demonstrated, however, that the respective onset temperatures for realistic values of typical activator concentrations in upconversion phosphors still remain below 120 K. Overall, Er^{3+} combines many of the theoretically suggested optimum conditions for a single-ion luminescent thermometer. Especially the strong intrinsic coupling between the two green-emitting ${}^{2}H_{11/2}$ and ${}^{4}S_{3/2}$ levels makes this ion particularly robust towards many disturbing excited state decay pathways and ensures that β -NaYF₄: Er³⁺, Yb³⁺ is one of the widest-range Boltzmann luminescent thermometers among all lanthanoid-activated inorganic compounds.

Conflicts of interest

There are no conflicts to declare.

Data availability

Source data generated in this study, which are presented in the main text and ESI, are provided as a Source Data files *via* the Zenodo repository under accession code https://doi.org/10.5281/zenodo.XXXX. Source data is also available from the corresponding author upon request.

Acknowledgements

Financial support by a materials cost allowance of the Fonds der Chemischen Industrie e.V. and the "Young College" of the North-Rhine Westphalian Academy of Sciences, Humanities, and the Arts is gratefully acknowledged by the author.

Author biography

Markus Suta studied Chemistry (MSc) at the University of Siegen, Germany, and obtained his PhD degree in Chemistry in the group of Claudia Wickleder in 2017, where he worked on the luminescence properties of divalent lanthanides and excitons in halidoperovskites for a better understanding of scintillators. He followed up with a second degree in Physics (MSc) with specialization in Theoretical (Particle) Physics in the group of Thomas Mannel in Siegen. From 2018 to 2021, he has been working as a postdoctoral researcher in the group of Andries Meijerink at Utrecht University, The Netherlands, on the theoretical modelling and experimental investigation of lanthanoid-based nanothermometers. Since 2021, he has been holding a tenure track position for Inorganic Photoactive Materials at the Heinrich Heine University Düsseldorf, Germany. His interests lie in the development and a fundamental understanding of new inorganic phosphors for various applications such as LEDs, luminescent thermometry, upconversion, as well as a better understanding of nonradiative transitions. For that purpose, he and his group combine inorganic synthesis and structural chemistry in solid-state systems with advanced optical characterization by means of luminescence spectroscopy as well as theoretical modelling. The same of the s

Notes and references

- 1 S. W. Allison, G. T. Gillies, *Rev. Sci. Instrum.*, 1997, **68**, 2615–2650.
- 2 S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, *J. Appl. Phys.*, 1998, **84**, 4649–4654.
- 3 P. R. N. Childs, J. R. Greenwood, C. A. Long, *Rev. Sci. Instrum.* 2000, **71**, 2959–2978.
- 4 S. A. Wade, S. F. Collins, G. W. Baxter, *J. Appl. Phys.*, 2003, **94**, 4743–4756.
- 5 V. K. Rai, *Appl. Phys. B*, 2007, **88**, 297–303.
- 6 A. H. Khalid, K. Kontis, *Sensors*, 2008, **8**, 5673–5744.
- 7 C. D. S. Brites, S. Balabhadra, L. D. Carlos, *Adv. Opt. Mater.*, 2019, **7**, 1801239.
- 8 M. Suta, A. Meijerink, *Adv. Theory Simul.* 2020, **3**, 2000176.
- 9 R. Marin, D. A. Gálico, R. Gayfullina, J. O. Moilanen, L. D. Carlos, D. Jaque, M. Murugesu, *J. Mater. Chem. C*, 2022, **10**, 13946–13953.
- 10 G. Brunet, R. Marin, M.-J. Monk, U. Resch-Genger, D. A. Gálico, F. A. Sigoli, E. A. Suturina, E. Hemmer, M. Murugesu, *Chem. Sci.*, 2019, **10**, 6799–6808.
- 11 S. Zanella, M. Aragon-Alberti, C. D. S. Brites, F. Salles, L. D. Carlos, J. Long, *Angew. Chem. Int. Ed.*, 2023, **135**, e202306970.
- 12 M. D. Dramićanin, *J. Appl. Phys.*, 2020, **128**, 040902.
- 13 M. Suta, *Opt. Mater.: X*, 2022, **16**, 100195.
- 14 B. Bendel, M. Suta, *J. Mater. Chem. C*, 2022, **10**, 13805–13814.
- 15 C. D. S. Brites, K. Fiaczyk, J. F. C. B. Ramalho, M. Sójka, L. D. Carlos, E. Zych, *Adv. Opt. Mater.*, 2018, **6**, 1701318.
- 16 M. Sójka, J. F. C. B. Ramalho, C. D. S. Brites, K. Fiaczyk, L. D. Carlos, E. Zych, *Adv. Opt. Mater.*, 2019, **7**, 1901102.
- 17 M. Sójka, C. D. S. Brites, E. Zych, *J. Mater. Chem. C*, 2020, **8**, 10086-10097.
- 18 P. Bolek, J. Zeler, C. D. S Brites, J. Trojan-Piegza, L. D. Carlos, E. Zych, *Chem. Eng. J*., 2021, **421**, 129764.
- 19 M. Sójka, W. Piotrowski, L. Marciniak, E. Zych, *J. Alloys Compd.*, 2024, **970**, 172662.
- 20 T. Zheng, M. Sójka, M. Runowski, P. Woźny, S. Lis, E. Zych, *Adv. Opt. Mater.*, 2021, **9**, 2101507.
- 21 M. Sójka, M. Runowski, T. Zheng, A. Shyichuk, D. Kulesza, E. Zych, S. Lis, *J. Mater. Chem. C*, 2022, **10**, 1220-1227.
- 22 Z. Cao, X. Wei, L. Zhao, Y. Chen, M. Yin, *ACS Appl. Mater. Interf.*, 2016, 8, 34546– 34551.
- 23 L. Cui, Z. Dong, D. Yu, Y. Wang, A. Meijerink, *Sci. Adv.* 2024, **10**, eado7737.
- 24 J. C. Fister, D. Rank, J. M. Harris, *Anal. Chem.*, 1995, **67**, 4269–4275.
- 25 C. Baleizão, S. Nagl, S. M. Borisov, M. Schäferling, O. S. Wolfbeis, M. N. Berberan-Santos, *Chem. Eur. J.*, 2007, **13**, 3643–3651.
- 26 A. Steinegger, I. Klimant, S. M. Borisov, *Adv. Opt. Mater.*, 2017, **5**, 1700372.
- 27 A. Steinegger, S. M. Borisov, *ACS Omega*, 2020, **5**, 7729–7737.
- 28 N. Menyuk, K. Dwight, J. W. Pierce, *Appl. Phys. Lett.*, 1972, **21**, 159–161.
- 29 K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, S. R. Lüthi, *Chem. Mater.*, 2004, **16**, 1244–1251.
- 30 L. Wang, Y. Li, *Chem. Mater.*, 2007, **19**, 727–734.
- 31 F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, *Nature*, 2010, **463**, 1061–1065.
- 32 H. Berthou, C. K. Jörgensen, *Opt. Lett*., 1990, **15**, 1100–1102.
- 33 M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, A. Patra, *Appl. Phys. Lett.*, 2004, **84**, 4753–4755.
- 34 F. Vetrone, R. Naccache, A. Zamarrón, A. J. de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodríguez, D. Jaque, J. G. Solé, J. A. Capobianco, *ACS Nano*, 2010, **4**, 3254–3258.
- 35 R. G. Geitenbeek, P. T. Prins, W. Albrecht, A. van Blaaderen, B. M. Weckhuysen, A. Meijerink, *J. Phys. Chem. C*, 2017, **121**, 3503–3510.
- 36 R. G. Geitenbeek, A. E. Nieuwelink, T. S. Jacobs, B. B. V. Salzmann, J. Goetze, A. Meijerink, B. M. Weckhuysen, *ACS Catal.* 2018, **8**, 2397–2401.
- 37 T. Hartman, R. G. Geitenbeek, G. T. Whiting, B. M. Weckhuysen, *Nat. Catal.*, 2019, **2**, 986–996.
- 38 R. G. Geitenbeek, J. C. Vollenbroek, H. M. H. Weijgertze, C. B. M. Tregouet, A. E. Nieuwelink, C. l. Kennedy, B. M. Weckhuysen, D. Lohse, A. van Blaaderen, A. van den Berg, M. Odijk, A. Meijerink, *Lab Chip*, 2019, **19**, 1236–1246.
- 39 I. K. van Ravenhorst, R. G. Geitenbeek, M. J. van der Eerden, J. Tijn van Omme, H. H. Peréz Garza, F. Meirer, A. Meijerink, B. M. Weckhuysen, *ChemCatChem*, 2019, **11**, 5505–5512.
- 40 C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, L. D. Carlos, *Nat. Nanotechnol.*, 2016, **11**, 851–856.
- 41 F. E. Maturi, R. S. R. Filho, C. D. S. Brites, J. Fan, R. He, B. Zhuang, X. Liu, L. D. Carlos, *J. Phys. Chem. Lett.*, 2024, **15**, 2606–2615.
- 42 T. P. van Swieten, T. Van Omme, D. J. Van Den Heuvel, S. J. W. Vonk, R. G. Spruit, F. Meirer, H. H. Pérez Garza, B. M. Weckhuysen, A. Meijerink, F. T. Rabouw, R. G. Geitenbeek, *ACS Appl. Nano Mat.*, 2021, **4**, 4208–4215.
- 43 Z. Ye, D. K. Bommidi, A. D. Pickel, *Adv. Opt. Mater.*, 2023, **11**, 2300824.
- 44 B. Harrington, Z. Ye, L. Signor, A. D. Pickel, *ACS Nanoscience Au*, 2023, **4**, 30–61.
- 45 A. R. N. Bastos, C. D. S. Brites, P. A. Rojas-Gutierrez, C. DeWolf, R. A. S. Ferreira, J. A. Capobianco, L. D. Carlos, *Adv. Funct. Mater.*, 2019, **29**, 1905474.
- 46 A. R. N. Bastos, C. D. S. Brites, P. A. Rojas-Gutierrez, R. A. S. Ferreira, R. L. Longo, C. DeWolf, J. A. Capobianco, L. D. Carlos, *Nanoscale*, 2020, **12**, 24169–24176.
- 47 X. Di, D. Wang, J. Zhou, L. Zhang, M. H. Stenzel, Q. P. Su, D. Jin, *Nano Lett.*, 2021, **21**, 1651–1658.
- 48 K. Wiwatowski, K. Sulowska, R. Houssaini, A. Pilch-Wróbel, A. Bednarkiewicz, A. Hartschuh, S. Maćkowski, D. Piątkowski, *Nanoscale*, 2023, **15**, 10614.
- 49 F. E. Maturi, R. S. R. Folho, C. D. S. Brites, J. Fan, R. He, B. Zhuang, X. Liu, L. D. Carlos, *J. Phys. Chem. Lett.*, 2024, **15**, 2606–2615.
- 50 A. D. Pickel, A. Teitelboim, E. M. Chan, N. J. Borys, P. J. Schuck, C. Dames, *Nat. Commun.*, 2018, **9**, 4907.
- 51 A. D. Pickel, C. Dames, *J. Appl. Phys.*, 2020, **128**, 045103.
- 52 T. P. van Swieten, A. Meijerink, F. T. Rabouw, *ACS Photonics*, 2022, **9**, 1366– 1374.
- 53 S. J. W. Vonk, T. P. van Swieten, A. Cocina, F. T. Rabouw, *Nano Lett.*, 2023, **23**, 6560–6566.
- 54 W. T. Carnall, H. Crosswhite, H. M. Crosswhite, *Technical Report: Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3*, 1978, Argonne National Lab (report no.: ANL-78-XX-95), DOI: 10.2172/6417825.

ARTICLE Journal Name

- 55 A. M. Kaczmarek, M. Suta, H. Rijckaert, A. Abalymov, I. Van Driessche, A. G. Skirtach, A. Meijerink, P. Van der Voort, *Adv. Funct. Mater.*, 2020, **30**, 2003101. 56 D. T. Klier, M. U. Kumke, *RSC Adv*., 2015, **5**, 67149–67156.
- 57 G. Chen, H. Qiu, P. N. Prasad, X. Chen, *Chem. Rev.*, **2014**, *114*, 5161–5214.
- 58 G. Yao, C. Link, Q. Meng, P. S. May, M. T. Berry, *J. Lumin.*, 2015, **160**, 276–281.
- 59 P. Villanueva-Delgado, D. Biner, K. W. Krämer*, J. Lumin*., 2017, **189**, 84–90.
- 60 P. Rühl, D. Wang, F. Garwe, R. Müller, M. Haase, K. W. Krämer, W. Paa, R. Heintzmann, S. H. Heinemann, H. Stafast, *J. Lumin.*, 2021, **232**, 117860.
- 61 T. P. van Swieten, T. van Omme, D. J. van den Heuvel, S. J. W. Vonk, R. G. Spruit, F. Meirer, H. H. P. Garza, B. M. Weckhuysen, A. Meijerink, F. T. Rabouw, R. G. Geitenbeek, *ACS Appl. Nano Mater.*, 2021, **4**, 4208–4215.
- 62 R. G. Geitenbeek, H. W. de Wijn, A. Meijerink, *Phys. Rev. Appl.*, 2018, **10**, 064006.
- 63 F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, A. Meijerink, *ACS Nano*, 2018, **12**, 4812–4823.
- 64 L. A. Riseberg, H. W. Moos, *Phys. Rev*., 1968, **174**, 429–438.
- 65 M. M. Lage, R. L. Moreira, F. M. Matinaga, J.-Y. Gesland, *Chem. Mater.*, 2005, **17**, 4523–4529.
- 66 B. R. Judd, *Phys. Rev.*, 1962, **127**, 750–761.
- 67 G. S. Ofelt, *J. Chem. Phys.*, 1962, **37**, 511–520.
- 68 T. P. van Swieten, J. M. Steenhoff, A. Vlasblom, R. de Berg, S. P. Mattern, F. T. Rabouw, M. Suta, A. Meijerink, *Light: Sci. Appl.*, 2022, **11**, 343.
- 69 M. J. Weber, *Phys. Rev.*, 1967, **157**, 262–272.
- 70 J. A. Capobianco, P. Kabro, F. S. Ermeneux, R. Moncorgé, M. Bettinelli, E. Cavalli, *Chem. Phys*., 1997, **214**, 329–340.
- 71 C. Z. Bi, J. Y. Ma, J. Yan, X. Fang, D. Z. Yao, B. R. Zhao, X. G. Qiu, *Eur. Phys. J. B*, 2006, **51**, 167–171.
- 72 A. Sanson, M. Giarola, B. Rossi, G. Mariotto, E. Cazzanelli, A. Speghini, *Phys. Rev. B*, 2012, **86**, 21430.
- 73 O. Greis, J. M. Haschke, *Chapter 45: Rare earth fluorides*, *Handbook on the Physics and Chemistry of Rare Earths* (eds.: K. A. Gschneidner, Jr., L. Eyring), 1982, **5**, 387–460.
- 74 M. J. J. Mangnus, V. R. M. Benning, B. Baumgartner, P. T. Prins, T. P. van Swieten, A. J. H. Dekker, A. van Blaaderen, B. M. Weckhuysen, A. Meijerink, F. T. Rabouw, *Nanoscale*, 2023, **15**, 16601–16611.
- 75 F. T. Rabouw, S. A. den Hartog, T. Senden, A. Meijerink, *Nat. Commun.*, 2014, **5**, 3610.
- 76 M. Suta, Ž. Antić, V. Ðorđević, S. Kuzman, M. D. Dramićanin, A. Meijerink, *Nanomaterials*, 2020, **10**, 543.
- 77 A. Skripka, A. Benayas, C. D. S. Brites, I. R. Martín, L. D. Carlos, F. Vetrone, *Nano Lett.*, 2020, **20**, 7648–7654.

Data availability

Source data generated in this study, which are presented in the main text and ESI, are provided as a Source Data files *via* the Zenodo repository under accession code https://doi.org/10.5281/zenodo.XXXX. Source data is also available from the corresponding author upon request. Data availability
source date generated in this study, which are greened in the snin text and ES), are growing the source Olde
files with the corresponding author upon request.
Realistic from the corresponding author upon