Built-in electric field in the Mn/C60 heterojunction promotes electrocatalytic nitrogen reduction to ammonia†
Abstract
The electrochemical nitrogen reduction reaction (NRR) has been regarded as a green and promising alternative to the traditional Haber–Bosch process. However, the high bond energy (940.95 kJ mol−1) of the NN triple bond hinders the adsorption and activation of N2 molecules, which is a critical factor restricting the catalytic performance of catalysts and their large-scale applications. Herein, an Mn/C60 heterostructure is constructed via a simple grinding and calcination process and achieves an extraordinary faradaic efficiency of 42.18% and an NH3 yield rate of 14.52 μg h−1 mgcat−1 at −0.4 V vs. RHE in 0.08 M Na2HPO4. Our experimental and theoretical results solidly confirm that the spontaneous charge transfer at the Mn/C60 heterointerface promotes the formation of a built-in electric field, which facilitates the electron transfer from Mn towards C60 and creates localized electrophilic and nucleophilic regions. The formation of the space-charge region effectively optimized the adsorption energy of the key intermediate *NH–*NH2 and also reduced the free energy barrier for the hydrogenation step of *NH–*NH to *NH–*NH2. Furthermore, the calculated lower limiting potential (UL(NRR)) in Mn/C60 relative to the HER (UL(HER)) demonstrates its enhanced selectivity toward the NRR. This work provided new insights into enhancing the activity and performance of electrocatalysts for the NRR by constructing heterojunctions to improve nitrogen adsorption.
- This article is part of the themed collection: Nanoscale 2025 Emerging Investigators