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One- and two-particle microrheology of soft materials
based on optical-flow image analysis†

Matteo Brizioli,a Manuel A. Escobedo-Sánchez,b Patrick M. McCall,c Yael Roichman,d

Veronique Trappe,e Margaret L. Gardel,c Stefan U. Egelhaaf,‡b Fabio Giavazzi,∗a and Roberto
Cerbino∗ f

Particle-tracking microrheology probes the rheology of soft materials by accurately tracking an en-
semble of embedded colloidal tracer particles. One-particle analysis, which focuses on the trajectory
of individual tracers is ideal for homogeneous materials that do not interact with the particles. By
contrast, the characterization of heterogeneous, micro-structured materials or those where particles
interact directly with the medium requires a two-particle analysis that characterizes correlations be-
tween the trajectories of distinct particle pairs. Here, we propose an optical-flow image analysis
as an alternative to the tracking-based algorithms to extract one and two-particle microrheology
information from video microscopy images acquired using diverse imaging contrast modalities. This
technique, termed Optical-Flow Microrheology (OFM), represents a high-throughput, operator-free
approach for the characterization of a broad range of soft materials, making microrheology accessible
to a wider scientific community.

1 Introduction

Microrheology is an invaluable tool to study the rheological prop-
erties of a large variety of soft matter systems, including cells
and other biological samples1–7. Compared to traditional rheom-
etry, microrheology requires small sample volumes, enables local
measurements, spans a broad frequency range, and works with
extremely soft samples. In its simplest implementation, passive
microrheology, the thermal Brownian motion of colloidal tracer
particles is analyzed to probe the linear viscoelastic properties of
the host material. In the one-particle (1P) analysis scheme this is
done by quantifying the thermally-induced positional fluctuations
of individual particles8, yielding the mean square displacement
(MSD) ⟨∆r2(t)⟩, from which the complex shear modulus of the

a Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli
Studi di Milano, via F.lli Cervi 93, 20090 Segrate, Italy
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1, 40225 Düsseldorf, Germany
c James Franck Institute and Department of Physics, The University of Chicago, Chicago,
IL 60637, USA
d J Raymond & Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv
6997801, Israel
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Switzerland
f Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria
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material G∗(ω) = G′(ω)+ iG′′(ω) is obtained through the Gener-
alized Stokes-Einstein relation

G∗(ω) =
dkBT

3πas⟨∆r2(s)⟩

∣∣∣∣
s=iω

, (1)

with d the dimensionality, kBT the thermal energy, a the tracer
radius, i the imaginary unit, and ⟨∆r2(s)⟩ the Laplace transform
of the MSD.

Over the years, several 1P microrheology techniques have been
developed, based on either particle tracking9, dynamic light scat-
tering10,11, diffusing wave spectroscopy8, or, more recently, on
differential dynamic microscopy12–14. However, for mechanically
heterogeneous media or when the particle directly influences the
local environment of the medium in which it is embedded, all
these approaches fail to properly measure the bulk mechanical
properties of the material. This challenge is overcome by two-
particle (2P) microrheology15, which minimizes local effects by
analyzing correlated displacements between particle pairs sepa-
rated by distances larger than the sample microstructural hetero-
geneities. Repeating this operation over a large collection of par-
ticle pairs permits for the determination of the bulk rheological
material response16. It is worth noting, that, since 2P microrhe-
ology probes the mechanical properties of the sample over length
scales much larger than the tracer size, the exact tracer size does
not need to be known, and the tracers do not need to be monodis-
perse.

In practice, 2P microrheology relies on the evaluation of the
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two-particle displacement cross-correlation tensor

Dµν (r,∆t) = ⟨∆x(n)µ ∆x(m)
ν δ

(
r− r(nm)

)
⟩, (2)

where the indices µ and ν denote spatial components, m and n
indicate distinct particles, ∆x(n)µ corresponds to the displacement
of a particle n along the direction µ between time t and t +∆t,
while r(nm) = x(n) − x(m) is their relative position vector at time
t. The averages ⟨...⟩ are taken over all the particles n and the
pairs of distinct particles n and m and, in the case of stationary
samples, they can also be taken over different initial time points
t and over different realizations15. Usually, Dµν is expressed in a
reference frame with one axis parallel to the line connecting the
centers of the particles (see also Fig.S1 in ESI), where it becomes
diagonal with eigenvalues D∥ (non degenerate) and D⊥ (two-
fold degenerate)17. For an incompressible medium, the flow field
generated by a point-like stress source decays for large distances
r ≫ a as 1/r,18 and it can be shown that the two-particle displace-
ment spatial cross-correlation tensor can be expressed in terms of
the frequency-dependent bulk modulus G̃(s)16,19,20*. Specifically,
one has

D̃∥(r,s) =
kBT

2πrsG̃(s)
, (3)

where D̃∥(r,s) is the Laplace transform of D∥(r,∆t), which does not
depend on the tracer radius. The above equation can also be ex-
pressed in terms of the perpendicular component D⊥, exploiting
the fact that D⊥ = 1

2 D∥. Comparing equations 1 and 3 suggests to
define a distinct or two-particle (2P) MSD, ⟨∆r2(∆t)⟩2P as15

⟨∆r2(∆t)⟩2P =
2d
3

r
a

D∥(r,∆t). (4)

While for a perfectly homogeneous medium 1P MSD and 2P
MSD are expected to coincide, in environments presenting het-
erogeneities on the scale of the tracer size, systematic deviations
from the Generalized Stokes-Einstein relation (equation 1) can
occur and a significant difference is expected 20. The above defi-
nition enables generalizing Eq. 1 to the case of non-homogeneous
materials, providing a unified recipe to obtain rheological infor-
mation from the MSD.

Historically, all implementations of 2P microrheology have re-
lied on particle-tracking analysis using optical microscopy. A fun-
damental limitation of this approach is the rapid decay of the
cross-correlation signal with increasing interparticle distance, ne-
cessitating continuous monitoring of a large number of particles
over extended time periods. This requirement poses significant
computational challenges. In addition, the extreme sensitivity to
tracking artifacts often demands meticulous parameter optimiza-
tion and supervision by a skilled operator. It was recently demon-
strated that 2P information can also be obtained in diffusing wave
spectroscopy microrheology experiments probing the correlated
motion of concentrated colloidal particles21. However, extending
this approach to enable tracking-free 2P microrheology in sam-
ples seeded with a relatively small number of tracer particles re-
mains a significant challenge to date.

* Formally, the complex modulus G∗(ω) is given by G∗(ω) = G̃(s = iω). 8

In this work, we introduce a tracking-free method to determine
the one- and two-particle mean square displacements, which form
the basis for one-particle (eq 1) and two-particle (eq 3) microrhe-
ology, respectively. This method, termed Optical Flow Microrhe-
ology (OFM), builds on optical flow, an image processing concept
designed to capture motion by analyzing spatio-temporal inten-
sity changes at each pixel22,23. In our approach, optical flow
images are generated from the difference between two image
frames separated by a short time interval ∆t, multiplied by a spa-
tial derivative of the image intensity distribution. We demonstrate
that the spatial correlations of these optical flow images provides
robust estimates of both one- and two-particle MSDs of tracer
particles. The validity of OFM is tested with a model Newtonian
fluid as well as a viscoelastic solution of entangled semiflexible
biopolymers (actin filaments). The latter is known to require the
2P microrheology scheme to obtain a correct estimate of the bulk
rheological properties, due to the effects of tracer particles on the
structure of nearby actin filaments15,24,25. To further highlight
the capabilities of OFM, we also study the hydrodynamic interac-
tions between colloidal particles in quasi-2D confinement26,27.

2 Materials and Methods
Throughout this work, we will assume that, while particles move
in three dimensions, those contributing to the optical signal are
positioned approximately within the object plane of the micro-
scope. This assumption implies that the depth of field of the imag-
ing setup is small compared to the typical interparticle distance,
such that the "real" distance between two particles can be reliably
estimated as the distance between their projections on the image
plane28. Formally, this enables us to reduce the problem to a
two-dimensional one, with x and r indicating positions and rela-
tive positions within the plane, respectively, and Dµν representing
a two-dimensional rank-two tensor. Moreover, hereafter, the one-
and two-particle MSDs, denoted as ⟨∆r2⟩ and ⟨∆r2⟩D, respectively,
are assumed to refer to the motion along a single spatial dimen-
sion. This choice corresponds to set d = 1 in equations 1 and 4.

2.1 Basics of OFM

To understand how OFM works it is useful to introduce the dis-
placement map

hµ (x|t,∆t)≡ ∑
n

δ

(
x−x(n)(t)

)
∆x(n)µ (t,∆t), (5)

which is non-zero at the positions of each particle n at time t,
where it assumes the displacement value ∆x(n)µ (t,∆t) along the di-
rection µ during the interval ∆t. Using equation 2 it is straight-
forward to obtain the identity

⟨hµ ⋆hν ⟩(r) = (N2 −N)Dµν (r)+N⟨∆r2⟩δµν δ (r), (6)

where ( f ⋆ g)(r) =
∫

dr0 f (r0 + r)g(r0) is the spatial cross-
correlation. Here, N is the number of particles, and ⟨∆r2⟩ rep-
resents the one-particle MSD. To simplify the notation, we omit-
ted the time dependence in the above equation. Eq.6 shows that
knowing hµ provides immediate access to both Dµν (r) and ⟨∆r2⟩.
Let us now outline how to obtain an excellent approximation of
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Fig. 1 Schematic of the OFM algorithm in 1D. (a) Intensity profile I(x, t) at time t. For clarity, only two "particles" are shown. (b) Intensity profile
I(x, t +∆t) at a later time t +∆t. Compared to time t the particles are slightly displaced. (c) The difference ∆I(x, t,∆t) shows two distinct "swings".
The amplitude (with sign) of each swing is proportional to the displacement of the corresponding particle, while the overall shape closely mirrors the
spatial gradient ∂1I(x, t) of the intensity profile, shown in panel (d). (e) Multiplying ∆I(x, t,∆t) by ∂1I(x, t,∆t) provides a spatial map f1(x, t) where each
particle is replaced by a positive definite, compactly supported function, that is centered at the particle position and whose amplitude (with sign)
is proportional to the corresponding displacement. (f) The squared gradient [∂xI(x, t)]2 provides a reference map, as [∂xI(x, t)]2∆x corresponds to the
f1(x, t) map when each particle performs the same displacement ∆x. (g) and (h) Time- and ensemble-averaged autocorrelation function of fx and of
the squared gradient, respectively. Eventually, the one-particle MSD and the displacement cross-correlation tensor are obtained from (g-h), exploiting
Eq.13 and 14, respectively.

hµ by using an image analysis scheme as that illustrated for a
simplified 1D implementation in Fig. 1. Assume that the inten-
sity in the image can be written as I(x, t) = ∑n ψ(n)

(
x−x(n)(t)

)
,

where ψ(n)(x) represents the intensity distribution of the n-th par-
ticle in a reference frame with the origin in the particle’s centroid
(Fig.1.a). For simplicity, we will assume that all particles share
the same intensity distribution ψ(n) = ψ. In a manner similar to
optical flow methods22, we define the map

fµ (x|t,∆t)≡−∂µ I(x, t) ·∆I(x|t,∆t), (7)

where ∂µ I denotes the partial derivative of the image intensity
with respect to the spatial coordinate µ (Fig.1.d) and ∆I(x|t,∆t)≡
I(x, t +∆t)− I(x, t) is the variation of the image intensity during a
time interval ∆t (Fig.1.b,c).

If ∆t is sufficiently short to ensure that displacements remain
small relative to the particle size, then we can approximate

∆I(x|∆t, t)≃−∑
ν

∑
n

∂ν ψ

(
x−x(n)(t)

)
∆x(n)ν (∆t, t). (8)

For dilute tracers, image overlap is negligible, so
ψ

(
x−x(n)

)
ψ

(
x−x(m)

)
≃ 0 for n ̸= m. Thus, we derive

fµ (x|t,∆t)≃−∑
ν

∂µ ψ(x′)∂ν ψ(x′)∗hν (x′|t,∆t), (9)

where ( f ∗ g)(x) =
∫

dx0 f (x−x0)g(x0) is the spatial convolution,
and hν is as defined in Eq.5 (Fig.1.e). In contrast to standard
optical flow velocimetry29, our objective is not to reconstruct the
instantaneous velocity field but to reliably capture its spatiotem-
poral correlations. To this end, we consider the expectation value
of the cross-correlation function

Cµν (r,∆t)≡ ⟨ fµ ⋆ fν ⟩ (10)

(Fig.1.g) and we obtain

Cµν ≃ ∑
α,β

Ψµανβ ∗ ⟨hα ⋆hβ ⟩, (11)

where Ψµανβ ≡ ∂µ ψ∂α ψ ⋆∂ν ψ∂β ψ. As shown in detail in the ap-
pendix, equation 11 can be written directly in terms of the cross-
correlation of the products of the partial spatial derivative of the
image intensity

Iµανβ (r)≡ ⟨∂µ I∂α I ⋆∂ν I∂β I⟩ (12)

(Fig.1.f,h). For distances r much shorter than the radius a of the
particles, we obtain

Cµν (r,∆t)≃

(
∑
α,β

Iµανβ (r)δαβ

)
⟨∆r2(∆t)⟩, (13)

whereas for large distances, r ≫ a, we get

Cµν (r,∆t)≃ ∑
α,β

(∫
dr′Iµανβ (r′)

)
Dαβ (r|∆t). (14)

Equations 13 and 14 represent our main theoretical results, re-
vealing how both the one-particle MSD and the spatial cross-
correlation tensor of displacements can be derived through rel-
atively simple image processing. Explicitly, Cµν (r,∆t) is calcu-
lated (see equation 10) as the mean value of the cross-correlation
function of the map fµ (x|t,∆t) defined in equation 7, whereas
the quantities in round brackets in equations 13 and 14 are com-
puted from the spatial map Iµανβ , which is obtained from the
image intensity distribution according to equation 12. A detailed
derivation of equations 13 and 14 can be found in the appendix.
It is worth noticing that the calculation of both Cµν and Iµανβ

involves the numerical evaluation of spatial derivatives of the im-

Journal Name, [year], [vol.],1–9 | 3

Page 3 of 10 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
ja

nv
ie

r 
20

25
. D

ow
nl

oa
de

d 
on

 2
02

5-
01

-2
4 

20
:4

7:
52

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4SM01390E

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm01390e


age, an operation whose accuracy crucially depends on spatial
sampling. Loosely speaking, the digital image of a single parti-
cle must be sufficiently "smooth" to ensure that the expansion in
equation 8 provides consistent results. Empirically, we find that
this condition is fulfilled whenever the sampling density is above
the Nyquist limit, i.e. when the resolution limit of the objective
is at least twice as large as the effective pixel size of the camera
sensor30. An illustrative example of the impact of digitation arti-
facts due to undersampling on the results is reported in ESI (Fig.
S6).

The eigenvalues D∥ and D⊥ can be extracted from the compo-
nents Dµν of cross-correlation tensor, obtained by inverting equa-
tion 14. As schematically illustrated in Fig.S1, for each pair of
particles separated by r, the displacements along the two axes can
be decomposed in the parallel and the perpendicular direction as
∆x1 = ∆x∥ cosθ −∆x⊥ sinθ and ∆x2 = ∆x∥ sinθ +∆x⊥ cosθ , respec-
tively, with θ the polar angle of r relative to the x-axis. According
to equation 2, the tensor components Dµν can be expressed in
terms of eigenvalues D∥ and D⊥ as

D11 = D⊥+
(

D∥−D⊥
)

cos2
θ (15)

D22 = D⊥+
(

D∥−D⊥
)

sin2
θ (16)

D12 = D⊥+
(

D∥−D⊥
)

sinθ cosθ , (17)

The typical appearance of D11(r,∆t) for an incompressible New-
tonian fluid is shown in Fig.2.a. Inspection of Eq.15 suggests two
methods for estimating D∥ and D⊥ from the two-dimensional map
D11. One option is to perform an azimuthal average of D11(r,∆t)
over narrow angular sectors oriented along θ = 0 and θ = π/2,
respectively. Alternatively, for each distance r one can fit Eq.15 to
the angular profile D11(r,θ ,∆t), and simultaneously estimate D∥
and D⊥ as best fitting parameters (Fig.2.c). We found this lat-
ter approach to be more reliable and used it for all the analyses
presented in this work. The approach illustrated above for D11

can also be applied, with slight modifications, to D22 and D12, by
using Eqs.16 and 17, respectively. Inverting Eq. 13 for each r en-
ables extracting a value for ⟨∆r2(∆t)⟩, which is then averaged over
a small circle of radius r0 ≪ a around the origin to provide the
best estimate for the one-particle MSD†. For each r, ⟨∆r2(∆t)⟩2P

is estimated using Eq. 4 and the resulting values are averaged
over a suitable interval r1 ≤ r ≤ r2, with r1 ≫ a. Sufficiently far
from boundaries the equality D∥ = 2D⊥ holds for an incompress-
ible fluid. Therefore D⊥ can be used to estimate independently
the 2P MSD, calculated as ⟨∆r2(∆t)⟩2P ≃ 4

3a ⟨rD⊥(r,∆t)⟩r1≤r≤r2 .
A MATLAB® implementation of the proposed algorithm is

openly available in Zenodo at 10.5281/zenodo.14038680.
In the above presentation, the image of each tracer particle

is represented by a time-independent function ψ(r). While this

† In our numerical implementation, this spatial average excludes the pixel at the ori-
gin. This expedient prevents the inclusion of a spurious additive noise term due
to random, independent noise in the detection chain, which affects the intensity
recorded by each pixel of the camera sensor.

formalism, in principle, is compatible with non-circularly sym-
metric particle shapes, it does not account for particle rotations,
which are expected to contribute to the OFM signal in the case of
anisotropic tracers31. However, the extension of the OFM frame-
work to include the rotational degree of freedom of the tracer
particles is beyond the aim of the present work.

2.2 Particle tracking and differential dynamics microscopy

Particle tracking analysis for the Newtonian fluid was performed
using a customized version of the MATLAB® script developed
and made freely available by the group of Maria Kilfoil at
UPEI (projects.upei.ca/kilfoillab/)32. Particle tracking and
two-particle analysis for the actin solution and the quasi-2D
colloidal suspension were performed using a MATLAB® im-
plementation33 of the original IDL routines by John Crocker,
David Grier, and Eric Weeks15. Differential dynamic microscopy
is used as an independent probe of the diffusive motion of
diluted colloidal particles dispersed in a Newtonian fluid. Details
on the method and its implementation can be found in Refs.34–36.

2.3 Sample preparation and acquisition

To experimentally validate OFM, we examine three different
systems: a Newtonian fluid (a glycerol-water mixture), a solution
of entangled semiflexible actin filaments, and colloidal particles
confined between two closely spaced parallel rigid surfaces in a
quasi-2D geometry. While the first two cases represent typical
microrheology applications, the third one allows us to study
hydrodynamic interactions.

Newtonian fluid
Our Newtonian sample is a glycerol-water mixture at glycerol
mass fraction 95%, which is maintained at a temperature of
T = (22±1) ◦C. Fluorescently labeled polystyrene particles
(abs/ems=530/607 nm) with nominal radius a = 0.49 µm
(microParticles GmbH), are dispersed at a volume fraction
of φ ≃ 0.05%. The sample is loaded in a rectangular glass
capillary (Vitrocom, CM Scientific) with a path length of 200 µm
along the microscope optical axis. Particle motion is observed
at the midplane of the sample using an inverted microscope
(Nikon Eclipse Ti-E) equipped with a 20× long-working-distance
objective (NA=0.54), under epifluorescent illumination (Nikon
Intenselight C-HGFIE) and using a TRITC filter cube. Sequences
of 8,000 square images (image size: 520x520 pixel2) are acquired
at a frame rate of 20 frames/s with a sCMOS camera (Hamamatsu
Orca Flash 4.0 v2) with an effective pixel size of dpix = 0.325 µm.

Entangled actin solution
The entangled solution of actin filaments is prepared by polymer-
izing Mg-ATP-actin monomers at a concentration of 0.5 mg/ml.
Fluorescent carboxylate-modified polystyrene beads (a = 0.5 µm
and φ ≃ 0.0004) are embedded within the solution as tracers.
Full details on the sample preparation can be found in Ref.37.
The sample is sealed in a custom-made sample cell with a path
length of 1 mm along the optical axis, and imaging begins 95
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b)

c)

a)

Fig. 2 Schematic illustration of the procedure for extracting the parallel (D∥) and the perpendicular (D⊥) eigenvalues of the displacement cross-
correlation tensor. (a) Pictorial representation of the component D11(r,∆t) of the displacement cross-correlation tensor Dµν (r,∆t) for an incompressible
fluid, obtained inverting Eq. 14. (b) Angular dependence of D11(r,∆t) (white dashed line in (a)). (c) D∥ and D⊥ as a function of distance r for a fixed
delay time ∆t. Red circles (blue squares) represent D∥ (D⊥) obtained as a best fitting parameter to the angular profile using the model in Eq. 15. The
gray shaded area marks the region r < a where D11 is dominated by same-particle correlations.

minutes after initiating polymerization of actin monomers at
∼ 24 ◦C. Under these conditions, the mechanical response is
stable for at least 1 hour. The typical mesh size of the actin
solution is ∼ 420 nm and the mean filament length is (15± 15)
µm. Fluorescence imaging is performed at λ =650 nm on an
inverted microscope (Nikon Ti Eclipse) equipped with a confocal
scan head (Yokogawa CSU-X), using a 20× Plan Fluor objective
(NA = 0.75) immersed in mineral oil. An additional 1.5x lens
(optivar) in the microscope body is engaged to give a final
magnification of 30×. To avoid edge effects, the focus is set at
150 µm above the bottom coverglass of the sample cell. Two sets
of images with dimensions of 1226x1704 pixel2 and effective
pixel size of dpix = 0.217 µm are acquired with a sCMOS camera
(Andor Zyla 4.2); the first set consists of 2401 frames acquired at
25 Hz, the second of 1081 frames acquired at 1 Hz. Combining
the two datasets enables the determination of the particle mean
squared displacements over a wide range of delay times ∆t.

Quasi-2D colloidal suspension
To demonstrate the ability of OFM to characterize hydrodynamic
interactions in confined environments, we use an aqueous sus-
pension of sulfate latex particles of radius a = 1.4 µm (Molecular
Probes), sealed within quasi-two-dimensional (2D) sample cells,
which are prepared as follows: 2.3 µL of the colloidal suspension
at φ = 8%w/v is first deposited onto a microscope slide. A
second microscope slide is then carefully placed on top, and the
two slides are bonded using UV-curing glue (NOA61, Norland
Products Inc.). The assembled cell is mounted on a microscope
slide for analysis. The final cell thickness w = 3.2 ± 0.2 µm is
determined by a small fraction of particles in the upper tail of the

size distribution, which remain trapped between the two glass
slides and effectively act as spacers. Visual inspection reveals
that the fraction of immobile particles acting as spacers is about
1%. We probe particle motion by acquiring four different series
of 15,000 square images each (image size: 520x520 pixel2) at
a rate of 500 frame/s. Imaging is performed on a bright field
optical microscope equipped with a 20× objective (NA = 0.5)
and a digital camera with an effective pixel size of dpix = 0.24 µm.

3 Results and Discussion
Let us first consider the results obtained for the glycerol-water
mixture, a sample expected to exhibit ideal Newtonian behavior.
Following the method outlined in Sec. 2.1, we calculate the paral-
lel (D∥) and perpendicular (D⊥) components of the two-particle
displacement spatial cross-correlation tensor from D11 (Eq. 15),
As shown in the inset of Fig. 3, both D∥ and D⊥ display for a fixed
∆t the expected 1/r scaling at large r.

Repeating the OFM calculation for different lag times ∆t (see
ESI) enables us to determine the time dependences of the 1P and
2P MSD, the latter being independently evaluated from both D∥
and D⊥. These are shown in Fig. 3, where the yellow triangles
denote the 1P MSD, the orange circles denote the 2P MSD de-
rived from D∥ and the blue squares that derived from D⊥. Both
one- and two-particle MSDs scale linearly with ∆t and are mutu-
ally consistent, as expected for homogeneous fluids15. The OFM
results also align with the MSDs obtained from particle-tracking
analysis (black open squares) in the range of small delay times.
Systematic deviation, however, appears for larger delays, where
the OFM results converge to a plateau value. This is because OFM
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Fig. 3 Experimental results obtained for a Newtonian fluid (glycerol-
water mixture). OFM results for 1P MSD (orange triangles) and 2P MSD
computed from the parallel (D∥, orange circles) and perpendicular (D⊥,
blue squares) eigenvalues of the displacement tensor are shown as full
symbols. Open square symbols represent the one-particle MSD obtained
with particle tracking. The dashed line corresponds to 2D0∆t, where
D0 = (1.20±0.15) ·10−3 µm2/s is the diffusion coefficient determined by
differential dynamic microscopy analysis of the same data. The horizontal
dotted line corresponds to (a/3)2, the square of the estimated largest
displacement for which the OFM analysis is expected to provide reliable
information. Inset: D∥ (red circles) and D⊥ (blues squares) for ∆t = 10s
as a function of r. The white area denotes the interval 4.0 µm < r <
30 µm, where D∥,⊥ exhibits 1/r scaling, and from which the two-particle
MSD is computed. Error bars represent the standard error estimated over
five independent repetitions.

relies on a linear expansion of the intensity profile that assumes
that particle displacements remain smaller than the particle im-
age size, as discussed in detail in Sec. 2.1. Based on our ex-
periments we estimate that reliable OFM results are obtained for
displacements up to approximately a/3, indicated by the horizon-
tal dotted line in Fig.3. Let us note that, while the 2P MSD closely
approximates the 1P MSD, it is systematically smaller. This minor
discrepancy can be attributed to the finite depth of focus of our
optical system, which allows slight misalignment along the opti-
cal axis. Consequently, the interparticle distance is systematically
underestimated, resulting in a lower two-particle MSD value, ac-
cording to Eq. 428.

A significant advantage of OFM compared to tracking-based
2P microrheology is its capability to independently estimate D∥
and D⊥ through spatial derivatives of the image intensity and
displacement along horizontal (x or 1) and vertical (y or 2) di-
rections, as outlined in equations 15 and 16. In our setup, a
non-uniform mechanical drift occurred along the capillary long
axis (y-axis), inducing a global shift of root mean square ampli-
tude of about 100 nm during acquisition. Although small, this
drift notably influences the D22 component of the displacement
cross-correlation tensor. However, the directional independence
of OFM permits for an accurate estimation of D11 even when an
orthogonal drift is present (see Fig.S2, S3 in ESI).

Fig. 4 Experimental results for a heterogeneous viscoelastic sample (en-
tangled solution of actin filaments). OFM results for 1P MSD (yellow
triangles) and 2P MSD (orange circles), the latter obtained by exploit-
ing the parallel component of the displacement tensor (Eq.4). Squares:
1P MSD (open symbols) and 2P MSD (filled symbols) obtained with
particle-tracking. Inset: D∥ (red circles) and D⊥ (blues squares) for
∆t = 10s as a function of r. The white area marks the region 4.5 µm < r <
30 µm, where D∥,⊥ exhibits 1/r scaling. Error bars represent the standard
error estimated over six non-overlapping portions of the field of view.

To test OFM on a sample where the individual particle motion
fails to reflect the average mechanical properties,3 we use the en-
tangled solution of actin filaments as a typical example of a sys-
tem where only the 2P MSD properly reflects the bulk mechanical
properties due to a direct interaction of the tracer particles with
the actin filament15,24,38. As shown in the inset of Fig.4, the OFM
analysis reveals that D∥ and D⊥ display a 1/r scaling within the
range of 4.0 µm < r < 30 µm. Averaging over this range, 2P MSD
displays a completely different time dependence compared to the
time dependence of the 1P MSD, as shown in the main graph of
Fig.4. Because the particles interact directly with the actin solu-
tion, the 1P MSD reaches a plateau at long times, characteristic
of arrested motion. By contrast, the 2P MSD increases continu-
ously in time, displaying a sublinear behavior, which reflects the
average mechanical response of the system24. The results ob-
tained with OFM are in excellent agreement with the equivalent
quantities calculated based on particle-tracking (black symbols in
Fig.4)39. The corresponding moduli G′ and G′′, estimated using
the algebraic form of the generalized Stokes-Einstein equation
proposed in Ref.11, are shown in ESI (Fig. S4). This demon-
strates the capability of OFM to provide accurate 2P microrheo-
logical characterization of heterogeneous complex fluids without
the need for tracking algorithms.

Finally, we use our optical flow approach to study the corre-
lated motion of micron-sized particles confined between parallel
flat walls, closely spaced by a distance w, in a so-called quasi-2D
geometry. Consistent with the results of previous studies40,41, we
find positive correlations along the parallel direction and negative
correlations in the transverse direction, as evidenced in the two-
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a)

b)

Fig. 5 Experimental determination of hydrodynamic interactions of
micron-sized particles confined between parallel plates. (a) Displace-
ment cross-correlation tensor D11(r,∆t = 0.002s), with positive (negative)
values for displacements parallel (perpendicular) to the x-axis. The cen-
tral region is patched for better visualization. (b) D∥ (circles) and D⊥
(squares) at time ∆t = 0.002 s normalized by the one-particle MSD ⟨∆r2⟩
obtained from OFM (colored symbols) and particle tracking (black and
white symbols) as a function of r/w, where w is the cell thickness. Dashed
lines correspond to the large-r asymptotic behavior ±0.31(w/r)2 reported
in Ref. 40 for the same quantities. Inset: one-particle MSD from OFM
(triangles) and particle tracking (circles). Error bars represent the stan-
dard error estimated over four independent repetitions.

dimensional displacement cross-correlation tensor D11 shown in
Fig. 5.a. This mirrors the fact that in 2D the flow field gener-
ated by a point-like moving particle is parallel to the particle’s
displacement along the direction of motion (the ∥ axis in Fig.
5.a), and antiparallel in the transverse direction (the ⊥ axis in
Fig. 5.a)40. Upon estimating the two eigenvalues of the displace-
ment cross-correlation tensor, we note that both D∥ and D⊥ ex-
hibit a 1/r2 scaling for r > 3w (Fig.S5 in ESI). This decay is faster
compared to the unconfined 3D case, where D∥ and D⊥ scale as
∼ 1/r for large distances (see insets of Fig. 3 and Fig.4). Our
results can be directly compared with those in Ref.40 as the con-

finement condition, captured by the ratio between particle radius
a and cell thickness w, is almost the same in the two studies:
a/w = 0.45±0.02 and a/w = 0.44±0.03, in Ref.40 and the present
work, respectively. In Fig. 5.b D∥(r,∆t) and D⊥(r,∆t), normalized
by the one-particle MSD ⟨∆r2(∆t)⟩, are plotted as a function of
r for fixed ∆t = 0.002 s (orange circles and blue squares, respec-
tively). As can be appreciated from the figure, for large r our data
are in good quantitative agreement with the asymptotic behavior
±0.31(w/r)2 reported for the same quantities in Ref.40 (dashed
lines). As for the previous data sets, OFM results closely match
particle tracking data, further confirming the validity of our ap-
proach.

Conclusions
In this work, we have introduced optical-flow microrheology
(OFM) as a robust method for microrheological analysis. We have
demonstrated that OFM applied to microscope images acquired
across various contrast modalities (bright-field microscopy for the
quasi-2D suspension, wide-field fluorescence microscopy for the
Newtonian sample, and confocal fluorescence microscopy for the
actin solution) yields reliable one-particle (1P) and two-particle
(2P) microrheology results. The core principle of OFM is that the
change between two images taken at times t and t +∆t can be
modeled as a convolution of the displacement map during ∆t and
the spatial gradient of the particle intensity profile. This formula-
tion enables the calculation of both the one-particle mean square
displacement (MSD) and the displacement cross-correlation ten-
sor components, D∥ and D⊥, representing longitudinal and trans-
verse particle interactions, respectively.

We validated our approach using three distinct samples and
found excellent agreement with traditional particle tracking anal-
ysis in all cases, attesting to the accuracy and reliability of OFM.
This study also identifies an inherent limitation of OFM in its cur-
rent form: it is optimal for probing small displacements, typically
those smaller than the probe particle radius a. While this is ad-
vantageous in highly viscoelastic systems, such as the entangled
actin network studied here, where particle motion is strongly con-
fined, it hampers the use of OFM to very soft samples, or cases
involving small tracers. Moreover, the number density of tracer
particles must be low enough to prevent significant particle super-
positions in the images, a limitation which also holds for particle
tracking-based microrheology.

Nevertheless, OFM offers distinct advantages over conventional
tracking-based 2P microrheology. First, the computation time in
OFM is determined by image size rather than the number of tracer
particles N, contrasting with tracking-based methods where com-
putational demands increase rapidly with N2. This feature can
be particularly relevant for applications requiring quasi-real time
monitoring, for example of processes during which the rheologi-
cal properties of a sample or product rapidly evolve over time and
actions are required in response to these changes. Furthermore,
OFM requires no operator-dependent inputs for particle selection
or identification, reducing the likelihood of user-induced biases.
Additionally, the ability of OFM to independently evaluate dis-
placement correlations along orthogonal directions (via D11 and
D22) facilitates the detection and correction of artifacts stemming
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from global drifts or displacements within the sample.

OFM thus represents an easily accessible, high-throughput,
operator-independent tool with broad potential for studying the
microrheology of diverse soft materials, investigating actively
generated stresses in biological systems42, and exploring fluid-
mediated interactions between colloidal particles in complex,
confined environments.

Appendix: derivation of cross-correlation function
Cµν from the image intensity

Here, we derive an expression for the cross-correlation function
Cµν (r,∆t)≡ ⟨ fµ ⋆ fν ⟩ in terms of the cross-correlation of the prod-
uct of the image partial derivatives Iµανβ (r)≡ ⟨∂µ I∂α I ⋆∂ν I∂β I⟩.
Throughout the derivation, we will assume that the fluctuation
δN in the number N of particles within the field of view is neg-
ligible. In other terms, we do not consider the possibility that a
particle could enter or exit the field of view during the consid-
ered time interval. We start considering the product of the partial
derivatives of the image

Hµν (x)≡ ∂µ I(x)∂ν I(x) =∑
n

∑
m

∂µ ψ
(
x−x(n))

)
∂ν ψ

(
x−x(m)

)
≃∑

n
∂µ ψ

(
x−x(n)

)
∂ν ψ

(
x−x(n)

)
=Φµν (x)∗∑

n
δ
(
x−x(n)

)
,

(18)

where Φµν (x) ≡ ∂µ ψ(x)∂ν ψ(x) and we assume diluted non-
overlapping particles. In the expressions above, the time depen-
dence has been omitted to lighten the notation. If we now con-
sider the cross-correlation function

(
Hµα ⋆Hµβ

)
we get(

Hµα ⋆Hνβ

)
(r) =

(
Ψµανβ (r)∗∑

n
∑
m

δ
(
r− r(nm)

)
, (19)

where Ψµανβ ≡ Φνβ ⋆Φνβ = ∂µ ψ∂α ψ ⋆∂ν ψ∂β ψ and r(nm) = x(n)−
x(m). Taking the expectation value of both sides of the above
equation and defining, consistently with equation 12, Iµανβ (r)≡
⟨Hµα ⋆Hνβ ⟩, we obtain

Iµανβ (r) =Ψµανβ ∗
(
Nδ (r)+ ⟨ ∑

n̸=m
δ (r− r(n,m))⟩

)

=Ψµανβ ∗
(

Nδ (r)+
N2 −N

A

)

=NΨµανβ +
N2 −N

A

∫
drΨµανβ ,

(20)

where N is the number of particles and we made use of the fact
that ⟨δ (r)⟩ = 1/A, where A is the area of the region considered.
By exploiting the relation∫

drΨµανβ = N−2
∫

drIµανβ (21)

we can write Ψµανβ (r) in terms of Iµανβ (r) as

Ψµανβ (r) =
1
N

[
Iµανβ (r)−

1−N−1

A

∫
drIµανβ (r)

]
. (22)

By substituting equations 22 and 6 in equation 11 yields in the
limit of small distances (r ≪ a)

Cµν (r,∆t)≃ N ∑
α,β

Ψµανβ (r) · ⟨∆r2(∆t)⟩δαβ

≃ ∑
α,β

Iµανβ (r) · ⟨∆r2(∆t)⟩δαβ ,

(23)

where the second equality is valid up to corrections of order N−1.
Whereas in the limit of large r (r ≫ a) we obtain

Cµν (r,∆t)≃ (N2 −N) ∑
α,β

(∫
dr′Ψµανβ (r′)

)
Dαβ (r|∆t)

≃ ∑
α,β

(
1
A

∫
dr′Iµανβ (r′)

)
Dαβ (r|∆t).

(24)
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